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Abstract 

Lithium-air and sodium-air batteries are promising energy storage systems for future 

smart grids and electric vehicles due to their extremely high theoretical energy 

densities. However, electrode material development and architecture design for 

cathode as well as the battery cycleability are big challenges for these batteries. This 

research aims at developing various novel nanomaterials with desired morphology and 

structure as cathode materials for lithium-air and sodium-air batteries.  

For lithium-air batteries, various carbon nanostructured cathodes were developed. 

They include: (1) Carbon black nanoparticles were treated under ammonia and carbon 

dioxide/hydrogen atmospheres and the surface area, porosity, defects, nitrogen-doping, 

and functional groups were modulated. These parameters for battery performance were 

investigated and it was found that the surface area of mesopores rather than others 

played an important role for the discharge capacity due to the passivation effect of 

discharge products. (2) One-dimensional (1D) nitrogen-doped carbon nanotubes  

(N-CNTs) electrode showed 50% higher of discharge capacity and better 

electrocatalytic activity for discharge product decomposition than pristine carbon 

nanotubes (CNTs) electrode. (3) Two-dimensional (2D) graphene nanosheets (GNSs) 

electrode delivered extremely high discharge capacity compared to porous carbon 

blacks due to the ideal porosity which increased the electrolyte wetting and oxygen 

diffusion, improving the efficiency of reactions. (4) Nitrogen-doped graphene 

nanosheets (N-GNSs) exhibited 1.5 times higher of electrocatalytic activity for oxygen 

reduction reaction than GNSs, further improved 40% of the discharge capacity.  

In addition, the morphology of discharge products was changed due to the defects and 

functional groups introduced by nitrogen doping. (5) The correlation between 

discharge product morphology and battery performance for sulphur-doped GNSs was 

studied and it was found that the discharge product contained structural defects such as 

oxygen and/or lithium vacancies resulting in different charge performance. 



 

iii 

 

In terms of exploring catalysts which have potential for improving battery cycleability, 

a facile rapid microwave-assisted hydrothermal method was developed and it was 

shown that the morphology and crystallinity of MnO2 were easily controlled by 

adjusting the reaction parameters. 

For sodium-air battery cathode, it was also found that N-GNSs showed higher 

electrocatalytic activity for oxygen reduction reaction and oxygen evolution reaction, 

resulting in improving discharge and charge performance. 
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Chapter 1  

1 Introduction∗ 
 

In this chapter, the recent development of lithium-air and sodium-air batteries is 

reviewed. The challenges of cathodes for these batteries are discussed and the 

solutions by nanomaterials and nanotechnology are suggested. In addition, the research 

objectives, and the thesis organization of this study are stated. 

 

  

                                                 
∗A version of this chapter has been published in Nano Energy, 2013, 2, 443–467. 
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1.1 Introduction to lithium-air batteries 
 

The demand for energy is putting pressure on fossil fuel reserves, which in turn is 

responsible for the climate change. It has been reported that oil consuming accounts 

for 40% of the total CO2 emission and is a major cause of geopolitical instability. On 

one hand, due to the fluctuation of oil prices and the serious environmental issues, 

there has been substantial interest in renewable energy sources. On the other hand, 

since the majority of oil is used for automobile and light truck applications, a transition 

to an electrified road transportation system should be a societal goal of utmost 

importance. This is heralded by the advent of hybrid electric vehicles (HEVs), and will 

be accelerated by plug-in hybrid vehicles (PHEVs) and ultimately pure electric 

vehicles (EVs). Therefore, the development of novel energy storage and conversion 

systems is required for effective utilization of renewable energy sources in future smart 

grids and power delivery systems.  

Rechargeable battery systems may provide a feasible route to achieve this objective. 

Various battery systems have been developed and been commercialized over the past 

few decades [1-6]. Figure 1.1 shows a range of battery technologies available or 

currently under development and compares their respective energy densities to 

gasoline [7]. Among of them, the most successful rechargeable battery technology is 

lithium-ion battery (LIB), which was first commercialized in 1991 and is widely used 

in a variety of portable electronic equipments and devices [8-10].  
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Figure 1.1 The gravimetric energy densities (Wh kg-1) for various types of 

rechargeable batteries compared to gasoline. 

 

However, the maximum energy density of current lithium-ion batteries is limited by 

the intercalation chemistry occurring within the electrode materials [11]. While it is 

known that the theoretical energy density of gasoline is 13000 Wh kg-1, the energy 

density of lithium-ion batteries is usually less than 200 Wh kg-1 [7]. Considering the 

energy conversion efficiency of 12.6%, the practical energy density for automotive 

applications is 1700 Wh kg-1, which is still much higher than lithium-ion batteries. 

There is no expectation that current or even future lithium-ion batteries will ever reach 

this target because of the intercalation reaction mechanism limit in lithium-ion battery 

system. A novel energy system must be considered. 

Metal-air batteries (e.g. iron-air, aluminum-air, and zinc-air) have attracted much 

attention as a possible alternative due to their relatively high energy densities because 

the cathode of a metal-air battery utilizes oxygen from ambient air as reactant in the 

electrochemical reaction rather than storing heavier active materials as in other battery 

systems. Among them, zinc-air batteries have been studied for many years because 
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they have more advantages such as a flat discharge voltage plateau, high safety, low 

cost, and long shelf life [12-14]. However, the theoretical specific energy density of 

zinc-air batteries is only 1084 Wh kg-1 [15], which is still much lower than gasoline 

and cannot fulfill the requirements of many high-energy applications of electric 

vehicles. 

Lithium is the lightest metal element and its theoretical energy density is 

approximately 11680 Wh kg-1 [7], nearly equivalent to gasoline. Therefore, many 

efforts have been devoted to lithium-air battery research [7, 16-18]. The concept of 

lithium-air chemistry was first introduced by Littauer and Tsai at Lockheed [19] in 

1976, but it received little attention until a lithium-air battery system based on 

nonaqueous electrolyte was presented by Abraham et al. in 1996 and the 

rechargeability was explored by Bruce et al. in 2006 [20, 21]. These pioneer works 

have attracted worldwide attentions and triggered numerous research works into 

lithium-air field. However, current lithium-air battery (most of the current research on 

lithium-air batteries has focused on pure oxygen rather than air as air contains H2O and 

CO2 which interferes with the desired electrochemical behavior) still suffers from a 

relatively low practical energy density as compared to the theoretical one and internal 

combustion engine that uses gasoline. Numerous fundamental and systematic studies 

are required to mature this novel electrochemical energy system. Undoubtedly, 

lithium-air battery is a pivotal research area for next-generation power source and 

could bring electric vehicles to the mass market in the future. 

Currently, there are four architectures of lithium-air batteries being pursued, which are 

categorized based on the applied electrolyte species (aprotic, aqueous, hybrid, and all 

solid-state electrolytes) [22-44]. The aprotic system is advantageous because it has 

been proved that the reduction product of Li2O2 can be reversed into the original 

reagents of the oxygen reduction reaction (ORR). This is aptly named the oxygen 

evolution reaction (OER) and signifies the recharge ability of the aprotic lithium-air 

battery. Because only the aprotic lithium-air battery has shown promise of electrical 
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rechargeability, this configuration has attracted the most effort worldwide to date 

compared to other electrolyte systems. 

 

Figure 1.2 The schematic figure of an aprotic lithium-air battery and the oxygen 

electrode structure. 

 

During the discharge of an aprotic lithium-air battery, an oxidation reaction occurs at 

the anode (Li ՜ Liା  eି). The electrons flow through an external circuit and the 

lithium ions generated from this reaction react with oxygen to form Li2O2 (and 

possibly Li2O) in the cathode. At the cathode, oxygen is reduced in either a two or four 

electron process as described by the following half cell reactions (Figure 1.2) [45, 46]: 

Oଶ   2eି   2Liା ՜ LiଶOଶ (3.10 V)   (1.1) 

Oଶ   4eି   4Liା ՜ 2LiଶO  (2.90 V)   (1.2) 
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The reaction above is thought to be reversible at externally applied potentials, i.e., 

lithium metal is plated out on the anode, and O2 is evolved or generated at the cathode. 

The potentials of reactions (1.1) and (1.2) are close, so both Li2O2 and Li2O are the 

most abundant reduction products after the discharge process. However, based on the 

studies from Abraham et al. [20] and Bruce et al. [21] using Raman spectrometry, 

Li2O2 was identified as the dominant reduction product formed after discharge. 

Moreover, Li2O2 exhibits a better rechargeability than Li2O since Li2O is believed to 

be electrochemically irreversible. Despite the fact that both Li2O2 and Li2O are bulk 

insulators, a recent study indicated that the stable surfaces of Li2O2 are  

half-metallic [47]. In contrast, the stable surfaces of Li2O are insulating and  

non-magnetic. The distinct surface properties of these compounds may explain the 

observations of electrochemical reversibility for systems with Li2O2 as the discharge 

product, and the irreversibility of systems that discharge product is Li2O. 

Considering Li2O2 is more desirable for rechargeable aprotic lithium-air batteries, 

currently the net discharge/charge reactions in an aprotic lithium-air battery is the 

oxidation/reductions involving of lithium peroxide, 

Discharge:   2Li   Oଶ ՜ LiଶOଶ    (1.3) 

Charge:   LiଶOଶ ՜ 2Li  Oଶ    (1.4) 

In the mechanism study, there are various different mechanisms proposed for O2 

reduction in Liା electrolytes over past years [48-53]. Recently, Bruce et al. applied 

spectroscopic methods to directly identify the reaction products and their intermediates. 

A possible mechanism has also been suggested in order to further elucidate the 

chemical reactions that occur at the cathode during discharge. 

Oଶ  eି ՜  Oଶ
ି      (1.5a) 

Oଶ
ି  Liା ՜ LiOଶ     (1.5b) 

           2LiOଶ ՜ LiଶOଶ  Oଶ     (1.5c) 
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The O2 is first reduced to Oଶ
ି in the nonaqueous electrolyte in presence of Liା ions, 

and the produced Oଶ
ି binds to Liା to form LiO2 on the surface of the electrode. Here 

LiO2 is unstable and disproportionates to the more stable Li2O2, as shown in  

reaction (1.5c). Therefore, Li2O2 is the final discharge product. Further, a charging 

process mechanism was also suggested by Bruce et al. [54]. During the charging 

process, oxidation occurs by direct decomposition according to the reaction 

                  LiଶOଶ ՜ 2Liା  2eି  Oଶ                                                (1.6) 

In other words, the pathways followed on reduction and oxidation are different. On 

charging, Li2O2 decomposes directly, in a one-step reaction to evolve O2 and does not 

pass through LiO2 as an intermediate. 

 

1.2 Challenges of cathode for lithium-air batteries 

 

The lithium-air battery may achieve a high practical specific energy as its theoretical 

specific energy is 11,431 Wh kg-1 based on lithium, assuming that Li2O2 is the product, 

starts with lithium (0.006941 Kg/mol) and the equilibrium potential is 2.96 V. 

2.96 96500 /S . 11, 431 /
3600 / 0.006941 /

V C molpec E Wh Kg
C Ah Kg mol

×
= =

×
 

Currently the specific energy of an aprotic lithium-air battery is lower than the 

theoretical one. The reason is the components of battery, including anodes, electrolytes 

(solvents and lithium salts), and cathodes cannot meet the requirements of practical 

applications. Furthermore, these components interplay each other, making the 

investigation of individual component more complicated. However, it has been shown 

that the battery performance is strongly determined by the cathode properties; 

therefore, our focus is primarily on the challenges of cathodes for the lithium-air 

batteries which are discussed below. 
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(I) One of the challenges for cathode is the limiting oxygen solubility and diffusion, 

accumulation of reaction products, and the lack of effective three-phase 

electrochemical interface, which are directly determined by air electrode materials and 

structures [55]. Because the discharge product, Li2O2, is not soluble in the organic 

electrolyte, it will deposit on the surface of the electrode. The channels of oxygen 

transportation will be blocked when the pores in the electrode are clogged, and the 

battery discharge is terminated. Therefore, developing of novel electrode materials and 

structures with optimum oxygen diffusion channels may relieve the pore clogging 

problems and improve the discharge performance. 

(II) Another big challenge is the limited electrical efficiency which is due to the 

overpotential or polarization losses at the cathode during discharge and charge. A high 

potential is needed for charging (~ 4.5 V) the porous carbon electrode whereas the 

discharge potential is around 2.5 V; the big difference between these two values leads 

to a low round-trip efficiency. The improvement of this efficiency may be expected by 

applying effective catalysts. Although recent reports doubt the efficacy of 

electrocatalys is in the aprotic lithium-air batteries considering the electrolyte solvent 

decomposition [56], most reports indicate that by applying catalysts, which are both 

good for oxygen reduction reaction during discharge and oxygen evolution during 

charge, the round-trip efficiency will be dramatically increased, thus increasing the 

battery performance [57, 58]. 

 

1.3 The solutions with nanomaterials 

 

Nanomaterials are defined as solid materials processing at least one of physical 

dimension on the order of nanometer scale which can be classified in terms of 

dimensionality into three categories: zero-dimensional (0D) nanomaterials which refer 

to the materials whose all three dimensions are limited to nanoscale (nanoparticles and 
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quantum dots), one-dimensional (1D) nanomaterials which have two dimensions in 

nanoscale (nanowires, nanorods and nanotubes), and two-dimensional (2D) 

nanomaterials which have only one nanoscale dimension (nanofilms) [59]. Since the 

properties of nanomaterials mainly depend on grain size and particle size distribution, 

chemical composition, and interfaces (grain boundaries, free surface, etc), they show 

unique physical and chemical properties compared to the bulk counterparts [60]. For 

example, the mechanical strength of nanomaterials is usually higher than that of bulk 

materials because of the reduced crystal defects and dislocations [61]; the thermal 

stability may change due to the large surface to volume ratio and surface energy [62]; 

the catalytic activity of nanocatalysts will increase because of the different surface 

structure and electronic properties [63].  

Many nanomaterials have been widely studied for energy storage applications, such as 

solar cells, lithium-ion batteries, supercapacitors, etc [64] and it is believed that they 

are good candidates for cathode materials of lithium-air batteries. In order to develop 

the cathodes for aprotic lithium-air battery, intensive research efforts have been 

devoted to various aspects, including electrode materials, structures, and catalysts. 

 

1.3.1 Air electrode materials and structures 

1.3.1.1 Electrode materials 

Various carbon materials have been applied as the air electrode materials for  

lithium-air batteries. Commercial carbon powders were studied as cathode materials 

for lithium-air batteries by Xiao et al. and the results indicated that the pore volume of 

carbon materials played an important role in determining the electrochemical 

performances of the lithium-air batteries [65, 66]. The large volume expansion in the 

Ketjen black (KB)-based electrode led to not only extra three-phase regions to 

facilitate the reaction in the electrode but also extra volume to hold the reaction 

product. Consequently, the battery using KB-based air electrode exhibited the highest 

specific capacity among all carbon powder samples.  
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Mesoporous carbon materials have been applied as cathode materials for lithium-air 

battery application. Xia et al. synthesized mesocellular carbon foam (MCF-C) with 

narrow pore size distribution (~ 30 nm) and the MCF-C delivered a discharge capacity 

of about 40% higher than that of Super P. Compared to commercial carbon powder; 

MCF-C has a hollow structure which possesses much larger mesopores, which is 

beneficial on accommodating discharge product [67]. Hall et al. prepared mesoporous 

carbon aerogels with tunable porosity by the polycondensation of resorcinol with 

formaldehyde [66]. The discharge capacity of the porous carbons showed that the 

appropriate pore volume and pore diameter are the key factors contributing to high 

discharge capacity.  

1D carbon nanomaterials (nanotube, nanofibres) have been widely studied in various 

electrochemical energy systems such as fuel cells, supercapacitors, and batteries due to 

their superior properties [68]. These 1D carbon nanomaterials also showed good 

performance in lithium-air battery applications. For example, aligned carbon 

nanofibers (CNFs) electrodes were fabricated using atmospheric pressure chemical 

vapor deposition (CVD) on porous anodized aluminum oxide (AAO) substrates coated 

with thin layers of Ta and Fe [69]. It was found that the unique properties of the CNFs 

electrodes, including high electronic conductivity, high void volume, and an 

interconnected, well-developed pore structure played significant roles in determining 

the battery performance.  

As the hottest carbon material currently, graphene nanosheets (GNSs) have also 

exhibited superior property in lithium-air batteries [70, 71]. The GNSs electrode 

increased the electrochemically accessible site and provided a large diffusion path for 

the oxygen which was due to their unique morphology and structure, therefore, 

significantly improving the discharge capacity. In addition, the edge sites of GNSs 

contained a large amount unsaturated carbon atoms which were very active to oxygen, 

improving activity for oxygen reduction reaction.  
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1.3.1.2 Structure design 

In addition to optimizing of the air electrode composition which may affect the 

cathode porosity [72], more efforts should be devoted towards designing novel porous 

air electrodes. 

Zhang et al. simulated and analyzed several air electrode designs including single pore 

system, dual pore system in two dimensions, and dual pore system with multiple time-

release catalysts. Some important parameters including the porosity distribution, pore 

connectivity, the tortuosity of the pore system, and the catalyst spatial distribution 

were studied. The results indicated that the dual pore system offers advantages for 

improved oxygen transport into the inner regions of the air electrode. When coupled 

with multiple time-release catalysts, the system can substantially extend the duration at 

higher powers, and result in maximum utilization of air electrode materials [73]. 

Considering the requirement of porous structure and available void volume for 

discharge products, numerous efforts have been devoted to designing a novel porous 

air electrode with maximum void volume [74, 75]. Shao-Horn et al. developed  

all-carbon–nanofiber porous electrode with highly efficient utilization of carbon 

material and void volume for lithium-air batteries which was found to yield high 

gravimetric energies of four times higher than lithium-ion batteries [69]. A similar 

freestanding carbon nanotube/nanofiber mixed buckypaper was also devepoped and 

applied in lithium-air batteries [76]. 

The oxygen diffusion in air electrode also plays an important role in battery 

performance. Recently, a porous carbon microstructure based on GNSs was developed 

by Zhang et al [77]. The hierarchical arrangement of the functional graphene 

nanosheets (FGSs) aggregated into loosely packed, “broken egg” structures with large 

interconnected tunnels which can function as numerous arteries that continuously 

supply oxygen into the interior of the electrode during the discharge process. Therefore, 

the lithium-air battery with this novel electrode delivered an exceptionally high 

capacity. 
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Another strategy to enhance the accessible void volume and oxygen diffusion rate is to 

decrease the amount of additive carbon and binder. For example, a novel free-standing 

type cathode was designed by a simple chemical deposition method, and the new air 

electrode exhibited a noticeably higher specific capacity and improved cycle efficiency 

compared to the conventional carbon-supported electrode [78]. Without additional 

carbon and binders, this 3D electrode provided abundant catalytic sites, intimate 

electronic contact and open pore system for unrestricted access of the reactant oxygen 

molecules 

 

1.3.2 Catalysts 

1.3.2.1 Metal oxide nanomaterials 

Transition metal oxides, including Fe2O3, Fe3O4, NiO, CuO, Co3O4, CoFe2O4 etc, have 

been employed as catalysts in lithium-air batteries by Bruce et al [79]. It was shown 

that Fe2O3 exhibited the highest initial discharge capacity, while Fe3O4, CuO and 

CoFe2O4 gave the best capacity retention. Co3O4 showed the best compromise between 

the discharge capacity and the retention [80, 81]. However, the reaction mechanism for 

these findings is still unclear and more detailed investigations are required. 

Manganese oxides are the most intensively studied catalysts for lithium-air battery 

applications [82]. Bruce et al. compared several types of MnOx, including α-MnO2 

nanowires, β-MnO2 nanowires, bulk MnO2 (α, β, γ, λ), and commercial Mn2O3 and 

Mn3O4 and it was found that α-MnO2 nanowires were the most effective catalysts for 

rechargeable lithium-air batteries due to their crystal structure and high surface area. 

Zheng et al. prepared composite electrodes by mixing α-MnO2 nanorods with carbon 

nanotubes or nanofibers and demonstrated that the charge capacity and cycleability of 

the battery were largely increased with the catalysts [83]. The reason is that the  

α-MnO2 reacts with discharge product Li2O to form Li2MnO3 during discharge, while 

the Li2O could be electrochemically removed from Li2MnO3 during charge. Guan et al. 

synthesized α-MnO2 nanoflakes coated on multi-walled carbon nanotubes (MWNTs) 
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and used this composite as cathode for lithium-air batteries [84]. The MnO2/MWNTs 

cathode exhibits a low charge potential of 3.8 V, dramatically improved the energy 

efficiency and cyclic ability. The MnO2 catalysts with different morphologies were 

also applied for lithium-air batteries [85-87]. 

 

1.3.2.2 Noble metal nanomaterials 

An important breakthrough to improve the charging efficiency of lithium-air batteries 

was made by Shao-Horn et al. who reported that Au can enhance the ORR during 

discharge, and Pt can facilitate OER during charge [88-93]. They further demonstrated 

that the PtAu alloy particles can serve as bifunctional catalysts, leading to a high 

round-trip efficiency of 77%. The discharge voltage of electrode with PtAu/C is higher 

than that of Vulcan XC-72 carbon electrode, while the average charge voltage of 

PtAu/C is 3.6 V which is 900 mV lower than that of carbon (~ 4.5 V). This finding 

evoked ample research interests on noble catalysts for lithium-air batteries.  

For example, Tatsumi et al. investigated the catalysis of Pd, mixed Pd and several 

metal oxides or metals for cost reduction as well as the improvement of discharge 

performance [94, 95]. It was found that by adding MnO2 to the electrode, the discharge 

plateau of the battery increases to 2.9 V, while the charge potential decreases to 3.6 V, 

leading to a high specific energy efficiency of 82%. However, similar to the research 

for fuel cells, noble metal catalyst may exhibit superior catalytic activity for ORR and 

OER, deserving further study to improve the electrochemical performance of  

lithium-air batteries. However, the high cost and limited source of noble metal have to 

be considered in future application. 

 

1.3.2.3 Other nanomaterials 

Transition metal N4-macrocycle complexes have long been known to be highly active 

for the catalytic reduction of oxygen. The heat-treated transition metal N4-macrocycle 
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complexes have been considered as an excellent catalyst for the oxygen reduction in 

lithium-air batteries [96]. In addition, conductive polymer and composites, transition 

metal nitrides, and perovskite-type oxides also exhibited good catalytic activity for 

oxygen reduction in lithium-air batteries [97-100]. 

 
 

1.4 Introduction to sodium-air batteries 

 

Lithium-air batteries have been intensively studied for the past few years and they 

showed extremely high discharge capacity. And the batteries could be charged when 

electrocatalysts which facilitate the oxygen evolution reaction are applied in cathodes. 

Therefore, lithium-air batteries are expected to be the choice for powering future 

generations of HEVs, PHEVs, and EVs. However, the supply of lithium is not able to 

meet the requirement if the amount of EVs increases too quickly and would probably 

run out in the foreseeable future. 

Sodium, an element with wide availability and low cost, is a very promising material 

for meeting the large scale grid energy storage needs. In addition, this material is the 

4th most abundant element in the Earth, providing potential to be an alternative source 

to lithium [101, 102]. Recently sodium has been investigated to replace lithium in air 

battery system [103-108]. To use sodium instead of lithium also has other advantages, 

such as the reaction mechanism for sodium is very similar to lithium in the positive 

electrode, making it possible to replace the anode materials without changing the 

configuration of the system; the working potential of sodium is relatively lower than 

that of lithium, if the rechargeable sodium batteries could be developed, low voltages 

are suitable for charge process and therefore the electrolyte would become more stable 

in these systems. 
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Figure 1.3 The general function principle of an alkali metal–oxygen battery. 

 

As shown in Figure 1.3, the discharge products of sodium-air batteries are various, 

depending on discharge voltage [106]. And it is interesting to note that the formation 

of Na2O2 (E = 2.33 V) is thermodynamically favored than that of NaO2 (E = 2.27 V), 

however, from the kinetically point of view, the formation of NaO2 only requires on 

electron transfer which is relatively easier. Moreover, NaO2 is considered to be an 

electronic conductor which may show different properties for charge process. The 

charge occurs at a voltage ~ 2.3 V at low current densities, which is close to the 

potential for decomposition of NaO2 to form sodium and oxygen. The finding clearly 

indicates the formation and decomposition of NaO2 is reversible. 
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Figure 1. 4 Electrochemical characterization of a, Na-O2 and b, Li-O2 cells. 

Figure 1.4 shows the discharge/charge curves of the Na-O2 cells and an analogous Li-

O2 cell [106]. It can be seen that for the Li-O2 cell, the discharge voltage plateau is 

about  

2.6 V, corresponding to an overpotential of about 300 mV. While for charging, the 

voltage increased quickly to around 4.2V, showing a large overpotential. In contrast, 

the Na-O2 cells show a very high round-trip efficiency. 

Since the discharge products of sodium-air batteries are not soluble in the organic 

electrolyte but deposit on the electrode which is similar to lithium-air batteries, it is 

believed that the cathode materials and structures will also show significantly impacts 

for battery performance. For example, Fu et al. has suggested that sodium-air battery 

using GNSs as cathode showed not only higher discharge voltage plateau than that of 

carbon film electrode, but also better performance in the charge process, resulting in 

good cycleability [107]. Therefore, air electrode material development and electrode 

structure design are necessary for improving the sodium-air battery performance. 

 

 

1.5 Thesis objectives 
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Lithium-air and sodium-air batteries are promising energy storage and conversion 

systems for future smart grids and automobile applications. However, the cathode 

development, including electrode materials and structure design is a big challenge for 

these systems and it is believed that nanomaterials and nanotechnology are one of the 

key solutions to address the challenges. 

In this content, the author devoted to develop various nanomaterials as cathode 

materials for lithium-air and sodium-air batteries. The efforts were mainly focused on 

synthesis of several carbon-based nanomaterials, such as carbon nanoparticles, carbon 

nanotubes, and graphene nanosheets and the pristine and heteroatom-doped materials 

were employed as electrode materials as well as for structure design. Furthermore, a 

facile microwave-assisted hydrothermal method was developed for synthesizing 

various MnO2 nanostructures which will be used as electrocatalysts for lithium-air and 

sodium-air batteries. The main research objectives are list below. 

(1) To study the parameters of cathode made of porous carbon black powders and find 

out which of them determines the lithium-air battery performance. As described in the 

above section, several carbon blacks were employed as cathode materials in other 

research groups; however, it is still debatable about the influence of carbon black 

properties on the battery performance since different carbon blacks were used in 

previous work. In this research, carbon black were treated under different atmospheres 

and the several parameters, including porosity, nitrogen content, functional groups, 

defects, etc were controlled and the influence of these in carbon cathode were studied 

in detail. 

(2) To design 3D electrodes with porous structure based on 1D CNTs and 2D GNSs, 

respectively. The interconnected opening structures in the electrodes provide ideal 

oxygen transportation channels as well as volume for accommodation of discharge 

products, increasing the battery performance. More importantly, the unsaturated 

carbon atoms at the edge of GNSs can increase activity for cathode reactions. 



18 

 

(3) To study the heteroatom-doping effects of carbon materials for battery performance. 

The carbon materials doped with other elements have shown superior activity for ORR 

or OER which makes these desired materials for lithium-air batteries. The finding will 

give a rational direction to modify other materials in this field. 

(4) To investigate the morphological evolution of the discharge products of lithium-air 

batteries and the relationship between them ang the battery performance by designing 

the cathode materials. The structure, composition, and electronic properties of the 

discharge products of lithium-air batteries could affect the battery performance. 

However, there are less supported experimental results, therefore, it is necessary to get 

a further insight into the reaction mechanisms. 

(5) To develop a facile method for synthesizing nanomaterials which can be applied as 

electrocatalysts for lithium-air batteries. The experimental parameters, such as the 

reaction time, temperature, etc. have significant effect on the morphology of the 

products. Through adjusting the above mentioned parameters, nanomaterials with 

different morphology and crystallinities can be obtained. 

(6) To design 3D electrode with GNSs for sodium-air batteries. The porous electrode 

is also believed to be critical for sodium-air batteries since the discharge product will 

deposit in the electrode which is similar to lithium-air batteries. However, because of 

the different properties of sodium (radius, activity, etc), it is necessary to study the 

influence of cathode material and structures design. 
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1.6 Thesis organization 
 

This thesis is consisted of ten chapters and fulfills the requirements on “Integrated-

Article” form as outlined in the Thesis Regulation Guide by the School of Graduate 

and Postdoctoral Studie of the University of Western Ontario. It includes the following 

arrangement. 

Chapter 1 gives an introduction to lithium-air and sodium-air batteries. In this section, 

the working principle, the challenges of the cathodes and the solutions by 

nanomaterials and nanotechnology are highlighted. Besides these, the research 

objectives and the thesis organization of this study are also clearly stated.  

Chapter 2 describes the experimental procedures, including methods for materials 

synthesis and characterization techniques used to study the as-prepared materials. 

Chapter 3 presents a detail study about the correlation between lithium-air battery 

performance and parameters of carbon black cathode, such as porosity, surface area, 

defects, heteroatom-doping, and functional groups. In this study, carbon blacks were 

treated under different atmospheres and all the parameters were controlled. 

Chapter 4 reports a novel electrode based on 1D N-CNTs for lithium-air batteries. 

The CNT electrode provides not only increased electrical connectivity and mechanical 

integrity, but also interconnected channels for oxygen transportation. More importantly, 

it is found that the heteroatom-doping of nitrogen to CNTs significantly increased the 

battery performance which is due to the active sites introduced after doping. 

Chapter 5 studies another novel electrode made of 2D GNSs for lithium-air batteries. 

The unique structures of GNSs form an ideal 3D three-phase electrochemical area and 

the diffusion channels for the electrolyte and oxygen, which increase the efficiency of 

the catalyst reactions. In addition, the active sites at the edge sites significantly 

contribute to the superior electrocatalytic activity towards ORR.   
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Chapter 6 describes the nitrogen-doping effects to GNSs electrode for lithium-air 

batteries. The changes of properties after doping elements to graphene framework and 

the influence of them to battery performance were studied and it is found that the 

defects and functional groups introduced played important roles in improving the 

performance. 

Chapter 7 investigates the morphology and properties of discharge products of 

lithium-air batteries and the related charge performance. The composition, phase, and 

morphology evolution were studied and a growth mechanism was proposed. This 

study clearly shows that it is very important to select or design optimal growth of 

discharge products by substrate controlling, therefore, tailoring Li2O2 properties to 

battery performance. 

Chapter 8 explores a facile rapid procedure to fabricate MnO2 nanostructures by a 

microwave-assisted hydrothermal method. MnO2 nanostructures with different 

morphology and crystallographic forms were selectively obtained by controlling the 

reaction parameters, such as temperature, reaction time, etc. The growth mechanism 

was studied and discussed in detail based on detailed observations in different growth 

stages. This study showed that this synthetic route is a promising way for synthesizing 

nanomaterials which can be used as electrocatalysts for lithium-air batteries.    

Chapter 9 demonstrates that the nitrogen-doping effects to GNSs electrode also have 

influence for sodium-air battery performance. Several parameters, such as the 

cycleability, electrochemical impedance and discharge products of the battery were 

studied and it clearly gave a direction for developing cathode materials and structures 

for the sodium battery system.    

Chapter 10 summarizes the results and contributions of the thesis work. In addition, 

some personal opinions and suggestions for future work are given by the author.



21 

 

References 

 

[1] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, 

Adv. Mater., 2011, 23, 1695–1715. 

[2] G. May, N. Maleschitz, H. Diermaier, T. Haeupl, The optimisation of grid designs 

for valve–regulated lead/acid batteries for hybrid electric vehicle applications, J. 

Power Sources, 2010, 195, 4520–4524.  

[3] B. Knosp, C. Jordy, P. Blanchard, T. Berlureau, Evaluation of Zr(Ni,Mn)2 laves 

phase alloys as negative active material for Ni-MH electric vehicle batteries, J. 

Electrochem. Soc., 1998, 145, 1478–1482.  

[4] X. Ji, K. Lee, L. Nazar, A highly ordered nanostructured carbon-sulphur cathode 

for lithium-sulphur batteries, Nat. Mater., 2009, 8, 500–506.  

[5] X. Ji, S. Evers, R. Black, L. Nazar,Stabilizing lithium-sulphur cathodes using 

polysulphide reservoirs, Nat. Commun., 2011, 2, 325. 

[6] A. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. Schalkwijk, Nanostructured 

materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4, 

366–377.   

[7] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, Lithium-air 

battery: Promise and challenges, J. Phys. Chem. Lett., 2010, 1, 2193–2203. 

[8] J. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium 

batteries, Nature, 2001, 414, 359–367. 

[9] M. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004, 104, 

4271–4301. 



22 

 

[10] P. Bruce, B. Scrosati, J. Tarascon, Nanomaterials for rechargeable lithium 

batteries, Angew. Chem. Int. Ed., 2008, 47, 2930–2946.  

[11] J. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 

2010, 22, 587–603. 

[12] E. Deiss, F. Holzer, O. Haas, Modeling of an electrically rechargeable alkaline 

Zn-air battery, Electrochim. Acta, 2002, 47, 3995–4010. 

[13] J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. 

zinc/air system, J. Power Sources, 1999, 80, 171–179. 

[14] X. Zhang, Fibrous zinc anodes for high power batteries, J. Power Sources, 2006, 

163, 591–597. 

[15] J. Lee, S. Kim, R. Cao, N. Choi, M. Liu, K. Lee, J. Cho, Metal-air batteries with 

high energy density: Li-air versus Zn-air, Adv. Energy Mater., 2011, 1, 34–50.  

[16] P. Bruce, S. Freunberger, L. Hardwick, J. Tarascon, Li-O2 and Li-S batteries with 

high energy storage, Nat. Mater., 2012, 11, 19–29.  

[17] P. Bruce, L. Hardwick, K. Abraham, Lithium-air and lithium-sulfur batteries, 

MRS Bull., 2011, 36, 506–512. 

[18] A. Kraytsberg, Y. Ein-Eli, Review on Li-air batteries: Opportunities, limitations 

and perspective, J. Power Sources, 2011, 196, 886–893. 

[19] E. Littauer, K. Tsai, Anodic behavior of lithium in aqueous electrolytes I. 

Transient passivation, J. Electrochem. Soc., 1976, 123, 771–776. 

[20] K. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen 

battery, J. Electrochem. Soc., 1996, 143, 1–5. 

[21] T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, P. Bruce, Rechargeable Li2O2 

electrode for lithium batteries, J. Am. Chem. Soc., 2006, 128, 1390–1393. 



23 

 

[22] J. Read, Characterization of the lithium/oxygen organic electrolyte battery, J. 

Electrochem. Soc., 2002, 149, A1190–A1195. 

[23] T. Zhang, N. Imanishi, Y. Takeda, O. Yamamoto, Aqueous lithium/air 

rechargeable batteries, Chem. Lett., 2011, 40, 668–673. 

[24] S. Visco, E. Nimon, B. Katz, L. Jonghe, M. Chu, Books of Abstract, The 12th 

International Meeting on Lithium Batteries, Nara, Japan, Jun. 27–Jul. 2, 2004; Abstract 

#53. 

[25] S. Visco, E. Nimon, B. Katz, L. Jonghe, M. Chu, Books of Abstract, The 

Electrochemical Society Meeting, Cancun, Mexico, Oct. 29–Nov. 3, 2006; Abstract 

#0389. 

[26] S. Visco, Y. Nimon, B. Katz, Ionically conductive composites for protection of 

active metal anodes, U. S. Patent, 2007, US 7,282,302, B2,  

[27] T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, 

N. Sammes, Li/polymer electrolyte/water stable lithium-conducting glass ceramics 

composite for lithium-air secondary batteries with an aqueous electrolyte, J. 

Electrochem. Soc., 2008, 155, A965–A969. 

[28] T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, 

N. Sammes, Water-stable lithium anode with the three-layer construction for aqueous 

lithium-air secondary batteries, Electrochem. Solid-State Lett., 2009, 12, A132–A135. 

[29] N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, 

Lithium anode for lithium-air secondary batteries, J. Power Sources, 2008, 185, 1392–

1397. 

[30] S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto, 

Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion 

conducting glass-ceramics with water, J. Power Sources, 2009, 189, 371–377. 



24 

 

[31] Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. 

Yamamoto, N. Sammes, A study on lithium/air secondary batteries-Stability of 

NASICON-type glass ceramics in acid solutions, J. Power Sources, 2010, 195, 6187–

6191. 

[32] T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, J. Xie, Y. Takeda, O. 

Yamamoto, N. Sammes, Stability of a water-stable lithium metal anode for a  

lithium-air battery with acetic acid-water solutions, J. Electrochem. Soc., 2010, 157, 

A214–A218. 

[33] L. Li, S. Zhao, A. Manthiram, A dual-electrolyte rechargeable Li-air battery with 

phosphate buffer catholyte, Electrochem. Commun., 2012, 14, 78–81. 

[34] E. Yoo, H. Zhou, Li-air rechargeable battery based on metal-free graphene 

nanosheet catalysts, ACS Nano, 2011, 5, 3020–3026. 

[35] Y. Wang, P. He, H. Zhou, A lithium-air capacitor-battery based on a hybrid 

electrolyte, Energy Environ. Sci., 2011, 4, 4994–4999. 

[36] Y. Wang, H. Zhou, A lithium-air fuel cell using copper to catalyze  

oxygen-reduction based on copper-corrosion mechanism, Chem. Commun., 2010, 46, 

6305–6307. 

[37] P. He, Y. Wang, H. Zhou, The effect of alkalinity and temperature on the 

performance of lithium-air fuel cell with hybrid electrolytes, J. Power Sources, 2011, 

196, 5611–5616. 

[38] P. He, Y. Wang, H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for 

improved stability, Electrochem. Commun., 2010, 12, 1686–1689. 

[39] Y. Wang, H. Zhou, A lithium-air battery with a potential to continuously reduce 

O2 from air for delivering energy, J. Power Sources, 2010, 195, 358–361. 



25 

 

[40] J. Zheng, R. Liang, M. Hendrickson, E. Plichta, Theoretical energy density of Li-

air batteries, J. Electrochem. Soc., 2008, 155, A432–A437. 

[41] P. He, Y. Wang, H. Zhou, Titanium nitride catalyst cathode in a Li-air fuel cell 

with an acidic aqueous solution, Chem. Commun., 2011, 47, 10701–10703. 

[42] B. Kumar, J. Kumar, R. Leese, J. Fellner, S. Rodrigues, K. Abraham, A  

solid-state, rechargeable, long cycle life lithium-air battery, J. Electrochem. Soc., 2010, 

157, A50–A54. 

[43] B. Kumar, J. Kumar, Cathodes for solid-state lithium-oxygen cells: Roles of 

NASICON glass-ceramics, J. Electrochem. Soc., 2010, 157, A611–A616. 

[44] E. Yoo, J. Nakamura, H. Zhou, N-doped graphene nanosheets for Li-air fuel cells 

under acidic conditions, Energy Environ. Sci., 2012, 5, 6928–6932. 

[45] M. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. 

Data, Monograph, 1998, 9.  

[46] S. Zhang, D. Foster, J. Read, Discharge characteristic of a non-aqueous electrolyte 

Li/O2 battery, J. Power Sources, 2010, 195, 1235–1240. 

[47] M. Radin, J. Rodriguez, F. Tian, D. Siegel, Lithium peroxide surfaces are metallic, 

while lithium oxide surfaces are not, J. Am. Chem. Soc., 2012, 134, 1093–1103. 

[48] T. Fujinaga, S. Sakura, Polarographic investigation of dissolved-oxygen in  

non-aqueous solvent, Bull. Chem. Soc. Jpn., 1974, 47, 2781–2786. 

[49] D. Sawyer, G. Chlericato, C. Angelis, E. Nanni, T. Tsuchiya, Effects of media 

and electrode materials on the electrochemical reduction of dioxygen, Anal. Chem., 

1982, 54, 1720–1724. 



26 

 

[50] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, The electrochemistry of noble 

metal electrodes in aprotic organic solvents containing lithium salts, J Electroanal. 

Chem, 1991, 297, 225–244. 

[51] Y. Lu, H. Gasteiger, E. Crumlin, R. McGuire, Y. Shao-Horn, Electrocatalytic 

activity studies of select metal surfaces and implications in Li-air batteries, J. 

Electrochem. Soc., 2010, 157, A1016–A1025. 

[52] C. Laoire, S. Mukerjee, K. Abraham, E. Plichta, M. Hendrickson, Elucidating the 

mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 

2009, 113, 20127–20134. 

[53] C. Laoire, S. Mukerjee, K. Abraham, E. Plichta, M. Hendrickson, Influence of 

nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air 

battery, J. Phys. Chem. C, 2010, 114, 9178–9186. 

[54] S. Freunberger, Y. Chen, N. Drewett, L. Hardwick, F. Bard, P. Bruce, The 

lithium-oxygen battery with ether-based electrolytes, Angew. Chem. Int. Ed., 2011, 50, 

8609–8613. 

[55] C. Tran, X. Yang, D. Qu, Investigation of the gas-diffusion-electrode used as 

lithium/air cathode in non-aqueous electrolyte and the importance of carbon material 

porosity, J. Power Sources, 2010, 195, 2057–2063. 

[56] B. McCloskey, R. Scheffler, A. Speidel, D. Bethune, R. Shelby, A. Luntz, On the 

efficacy of electrocatalysis in nonaqueous Li-O2 batteries, J. Am. Chem. Soc., 2011, 

133, 18038–18041. 

[57] X. Ren, S. Zhang, D. Tran, J. Read, Oxygen reduction reaction catalyst on 

lithium/air battery discharge performance, J. Mater. Chem., 2011, 21, 10118–10125. 

[58] Y. Lu, H. Gasteiger, M. Parent, V. Chiloyan, Y. Shao-Horn, The influence of 

catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries, 

Electrochem. Solid-State Lett., 2010, 13, A69–A72. 



27 

 

[59] G. Cao, Nanostructures & nanomaterials synthesis, properties & applications. 

Imperial College Press, 2004. 

[60] H. Nalwa, Handbook of nanostructured materials and nanotechnology. Academic 

Press, San Diego, 2000. 

[61] Z. Wang, Transmission electron microscopy of shape-controlled nanocrystals and 

their assemblies, J. Phys. Chem. B, 2000, 104, 1153–1175. 

[62] C. Zhong, J. Luo, B. Fang, B. Wanjala, P. Njoki, R. Loukrakpam, J. Yin, 

Nanostructured catalysts in fuel cells, Nanotechnology, 2010, 21, 062001. 

[63] X. Xie, W. Shen, Morphology control of cobalt oxide nanocrystals for promoting 

their catalytic performance, Nanoscale, 2009, 1, 50–60. 

[64] X. Chen, C. Li, M. Gratzel, R. Kostechi, S. Mao, Nanomaterials for renewable 

energy production and storage, Chem. Soc. Rev., 2012, 41, 7909–7937. 

[65] Y. Yang, Q. Sun, Y. Li, H. Li, Z. Fu, Nanostructured diamond like carbon thin 

film electrodes for lithium air batteries, J. Electrochem. Soc., 2011, 158, B1211–

B1216. 

[66] M. Mirzaeian, P. Hall, Preparation of controlled porosity carbon aerogels for 

energy storage in rechargeable lithium oxygen batteries, Electrochim. Acta, 2009, 54, 

7444–7451. 

[67] X. Yang, P. He, Y. Xia, Preparation of mesocellular carbon foam and its 

application for lithium/oxygen battery, Electrochem. Commun., 2009, 11, 1127–1130. 

[68] Q. Zhang, E. Uchaker, S. Candelaria, G. Cao, Nanomaterials for energy 

conversion and storage, Chem. Soc. Rev., 2013, 42, 3127–3171. 



28 

 

[69] R. Mitchell, B. Gallant, C. Thompson, Y. Shao-Horn, All-carbon-nanofiber 

electrodes for high-energy rechargeable Li-O2 batteries, Energy Environ. Sci., 2011, 4, 

2952–2958. 

[70] B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Graphene nanosheets as 

cathode catalysts for lithium-air batteries with an enhanced electrochemical 

performance, Carbon, 2012, 50, 727–733. 

[71] Y. Wang, H. Zhou, To draw an air electrode of a Li-air battery by pencil, Energy 

Environ. Sci., 2011, 4, 1704–1707. 

[72] S. Younesi, S. Urbonaite, F. Bjorefors, K. Edstrom, Influence of the cathode 

porosity on the discharge performance of the lithium-oxygen battery, J. Power Sources, 

2011, 196, 9835–9838. 

[73] R. Williford, J. Zhang, Air electrode design for sustained high power operation of 

Li/air batteries, J. Power Sources, 2009, 194, 1164–1170. 

[74] Y. Lu, D. Kwabi, K. Yao, J. Harding, J. Zhou, L. Zuin, Y. Shao-Horn, The 

discharge rate capability of rechargeable Li-O2 batteries, Energy Environ. Sci., 2011, 4, 

2999–3007. 

[75] G. Shitta-Bey, M. Mirzaeian, P. Halla, The electrochemical performance of 

phenol-formaldehyde based activated carbon electrodes for lithium/oxygen batteries, J. 

Electrochem.Soc., 2012, 159, A315–A320. 

[76] G. Zhang, J. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, E. Plichta, 

Lithium-air batteries using SWNT/CNF buckypapers as air electrodes, J. Electrochem. 

Soc., 2010, 157, A953–A956. 

[77] J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. Graff, W. Bennett, Z. Nie, L. Saraf, I. 

Aksay, J. Liu, J. Zhang, Hierarchically porous graphene as a lithium-air battery 

electrode, Nano Lett., 2011, 11, 5071–5078. 



29 

 

[78] Y. Cui, Z. Wen, Y. Liu, A free-standing-type design for cathodes of rechargeable 

Li-O2 batteries, Energy Environ. Sci., 2011, 4, 4727–4734. 

[79] A. Debart, J. Bao, G. Armstrong, P. Bruce, An O2 cathode for rechargeable 

lithium batteries: the effect of a catalyst, J. Power Sources, 2007, 174, 1177–1182. 

[80] T. Yoon, Y. Park, Carbon nanotube/Co3O4 composite for air electrode of  

lithium-air battery, Nanoscale Res. Lett., 2012, 7, 1–4. 

[81] Y. Cui, Z. Wen, S. Sun, Y. Lu, J. Jin, Mesoporous Co3O4 with different porosities 

as catalysts for the lithium-oxygen cell, Solid State Ionics, 2012, 225, 598–603. 

[82] A. Debart, A. Paterson, J. Bao, P. Bruce, α-MnO2 nanowires: A catalyst for the O2 

electrode in rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47, 4597–

4600. 

[83] G. Zhang, J. Zheng, R. Liang, C. Zhang, B. Wang, M. Au, M. Hendrickson, E. 

Plichta, α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes 

for rechargeable lithium-air batteries, J. Electrochem. Soc., 2011, 158, A822–A827. 

[84] J. Li, N. Wang, Y. Zhao, Y. Ding, L. Guan, MnO2nanoflakes coated on  

multi-walled carbon nanotubes for rechargeable lithium-air batteries, Electrochem. 

Commun., 2011, 13, 698–700. 

[85] H. Cheng, K. Scott, Carbon-supported manganese oxide nanocatalysts for 

rechargeable lithium-air batteries, J. Power Sources, 2010, 195, 1370–1374. 

[86] S. Ida, A. Thapa, Y. Hidaka, Y. Okamoto, M. Matsuka, H. Hagiwara, T. Ishihara, 

Manganese oxide with a card-house-like structure reassembled from nanosheets for 

rechargeable Li-air battery, J. Power Sources, 2012, 203, 159–164. 

[87] L. Jin, L. Xu, C. Morein, C. Chen, M. Lai, S. Dharmarathna, A. Dobley, S. Suib, 

Titanium containing γ-MnO2 (TM) hollow spheres: One-step synthesis and catalytic 



30 

 

activities in Li/air batteries and oxidative chemical reactions, Adv. Funct. Mater., 2010, 

20, 3373–3382. 

[88] P. Andrei, J. Zheng, M. Hendrickson, E. Plichta, Some possible approaches for 

improving the energy density of Li-air batteries, J. Electrochem. Soc., 2010, 157, 

A1287–A1295. 

[89] G. Dathar, W. Shelton, Y. Xu, Trends in the catalytic activity of transition metals 

for the oxygen reduction reaction by lithium, J. Phys. Chem. Lett., 2012, 3, 891–895. 

[90] Y. Lu, H. Gasteiger, E. Crumlin, R. McGuire, Y. Shao-Horn, Electrocatalytic 

activity studies of select metal surfaces and implications in Li-air batteries, J. 

Electrochem. Soc., 2010, 157, A1016–A1025. 

[91] Y. Lu, H. Gasteiger, M. Parent, V. Chiloyan, Y. Shao-Horn, The influence of 

catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries, 

Electrochem. Solid-State Lett., 2010, 13, A69–A72. 

[92] Y. Xu, W. Shelton, O2 reduction by lithium on Au(111) and Pt(111), J. Chem. 

Phys., 2010, 133, 024703. 

[93] J. Chen, J. Hummelshoj, K. Thygesen, J. Myrdal, J. Norskov, T. Vegge, The role 

of transition metal interfaces on the electronic transport in lithium-air batteries, Catal. 

Today, 2011, 165, 2–9. 

[94] A. Thapa, K. Saimen, T. Ishihara, Pd/MnO2 air electrode catalyst for rechargeable 

lithium/air battery, Electrochem Solid-State Lett., 2010, 13, A165–A167. 

[95] A. Thapa, T. Ishihara, Mesoporous α-MnO2/Pd catalyst air electrode for 

rechargeable lithium-air battery, J. Power Sources, 2011, 196, 7016–7020. 

[96] S. Zhang, D. Foster, J. Read, Heat-treated metal phthalocyanine complex as an 

oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries, Electrochim. 

Acta, 2011, 56, 4544–4548. 



31 

 

[97] S. Lee, S. Zhu, C. Milleville, C. Lee, P. Chen, K. Takeuchi, E. Takeuchi, A. 

Marschilok, The influence of catalysts on discharge and charge voltages of 

rechargeable Li-oxygen batteries, Electrochem. Solid-State Lett., 2010, 13, A162–

A164. 

[98] A. Marschilok, S. Zhu, C. Milleville, S. Lee, E. Takeuchi, K. Takeuchi, 

Electrodes for nonaqueous oxygen reduction based upon conductive polymer-silver 

composites, J. Electrochem. Soc., 2011, 158, A223–A226. 

[99] S. Dong, X. Chen, K. Zhang, L. Gu, L. Zhang, X. Zhou, L. Li, Z. Liu, P. Han, H. 

Xu, J. Yao, C. Zhang, X. Zhang, C. Shang, G. Cui, L. Chen, Molybdenum nitride 

based hybrid cathode for rechargeable lithium-O2 batteries, Chem. Commun., 2011, 47, 

11291–11293. 

[100] Z. Fu, X. Lin, T. Huang, A. Yu, Nano-sized La0.8Sr0.2MnO3 as oxygen reduction 

catalyst in nonaqueous Li/O2 batteries, J. Solid State Electrochem., 2012, 16, 1447–

1452. 

[101] X. Lu, G. Xia, J. Lemmon, Z. Yang, Advanced materials for sodium-beta 

alumina batteries: Status, challenges and perspectives, J. Power Sources, 2010, 195, 

2431–2442. 

[102] S. Kim, D. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable 

sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. 

Energy Mater., 2012, 2, 710–721. 

[103] E. Peled, D. Golodnitsky, H. Mazor, M. Goor, S. Avshalomov, Parameter 

analysis of a practical lithium- and sodium-air electric vehicle battery, J. Power 

Sources, 2011, 196, 6835–6840. 

[104] Q. Sun, Y. Yang, Z. Fu, Electrochemical properties of room temperature 

sodium-air batteries with non-aqueous electrolyte, Electrochem.Commoun., 2012, 16, 

22–25. 



32 

 

[105] S. Das, S. Xu, L. Archer, Carbon dioxide assist for non-aqueous sodium-oxygen 

batteries, Electrochem. Commoun., 2013, 27, 59–62. 

[106] P. Hartmann, C. bender, M. Vracar, A. Durr, A. Garsuch, J. Janek, P. Adelhelm, 

A rechargeable room-temperature sodium superoxide (NaO2) battery, Nat. Mater., 

2013, 12, 228–232. 

[107] W. Liu, Q. Sun, Y. Yang, J. Xie, Z. Fu, An enhanced electrochemical 

performance of a sodium-air battery with graphene nanosheets as air electrode 

catalysts, Chem. Commun., 2013, 49, 1951–1953. 

[108] J. Kim, H. Lim, H. Gwon, K. Kang, Sodium-oxygen batteries with alkyl-

carbonate and ether based electrolytes, Phys. Chem. Chem. Phys., 2013, 15, 3623–

3629. 

 
  



33 

 

Chapter 2  

2 Experimental and Characterizations 
 

In this chapter, the methods for material synthesis and characterization techniques are 

described. 
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2.1 Experimental 
 

2.1.1 Synthesis of porous carbon blacks 

The synthesis of carbon blacks with different porosity have been widely reported [1-4]. 

Commercial N330 furnace carbon black (from Sid Richardson Carbon Corporation) 

was used as the starting material. It was heat-treated under NH3 or CO2 (with or 

without H2) atmospheres. The percentage of mass that was lost during the  

heat-treatment, W, was calculated as follows: 

   ܹ ൌ ௧ ௦௦ – ௦௦
௧ ௦௦

 ൈ 100  (2.1) 

 

2.1.1.1 Samples treated by NH3 

Typically, 500 mg of carbon black powder was spread in a fused silica boat and then 

the boat was introduced in a fused silica tube (5 cm diameter). Ar was purged into the 

tube for 30 min. Then the tube was place in an oven and NH3 was introduced into the 

tube when the temperature of the oven reached to 1050 oC. Based on the desired mass 

losses (10, 35, 54, 75, 85%), different pyrolysis time was applied for the heat-

treatment. It is to note that for the 75 and 85% mass losses, the samples were made 

with several pyrolysis to obtain around 150-200 mg of final powder. 

 

2.1.1.2 Samples treated by CO2 (with or without H2) 

Typically, 500 mg of carbon black was spread in a fused silica boat and then the boat 

was introduced in a fused silica tube (5 cm diameter). Ar was purged into the tube for 

30 min. Then the tube was place in an oven and CO2 was introduced into the tube 

when the temperature of the oven reached to 1050 oC. Based on desired mass losses 

(13, 35, 50, 75%), different pyrolysis time was applied for the heat-treatment. For the 
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75% mass loss, the sample was again made with several pyrolysis to obtain around 

150-200 mg of final powder. These samples were further pyrolysed under H2 at 950 oC 

to remove oxygen. It is possible that some oxygen was introduced in the sample by 

simple contact with air after pyrolysis. 

 

2.1.2 Synthesis of nitrogen-doped carbon nanotubes (N-CNTs) 

 

Figure 2.1 Schematic diagram of FCCVD method for synthesis of N-CNTs. 

 

The nitrogen-doped carbon nanotubes (N-CNTs) were synthesized by a floating 

catalyst chemical vapor deposition (FCCVD) method [5], as shown in Figure 2.1. The 

experiment was carried out in a tube furnace (Lindberg/Blue, Mini-Mite Tube Furnace, 

Model: TF55035A) system. Typically, 100 mg of ferrocene (Sigma-Aldrich, 98%) and 

1000 mg of melamine were placed at the entrance of the furnace in a quartz tube. As 

the system reached to the target temperature (800-900 oC), the vapor of ferrocene with 

melamine was carried by Ar flow of 320 sccm into the high temperature region where 

the substrate was placed. The furnace was turned off after 30 min and cooled down to 

room temperature. The as-prepared N-CNTs were collected from the substrate. 

 



36 

 

2.1.3 Synthesis of graphene nanosheets (GNSs), nitrogen-
doped graphene nanosheets (N-GNSs), and sulphur-
doped graphene nanosheets (S-GNSs) 

 

Graphene nanosheets (GNSs) were prepared by the oxidation of graphite powder using 

the modified Hummers’ method [6, 7]. All the chemicals used in this experiment were 

of analytical grade from Sigma-Aldrich Company and used without further 

purification. In a typical process, 1 g of graphite powder (325 mesh), 0.75 g of NaNO3 

and 4.5 g of KMnO4 were added to 37.5 ml of concentrated H2SO4 and stirred for 2 h 

in an ice water bath. Then the mixture was stirred for five days at room temperature. 

100 mL of 5 wt. % H2SO4 and 3 g of 30 wt. % H2O2 were added into the above 

mixture in sequence under stirring with interval of 1 h. After stirring for 2 h, the 

sample was filtered and washed until the pH=7. The as-received sample was dried in a 

vacuum oven at 60 oC and heated at 1050 oC for 30 s under Ar to produce GNSs. 

Nitrogen-doped graphene nanosheets (N-GNSs) were synthesized by heat-treated 

GNSs under NH3 atmosphere [8, 9]. Typically, 100 mg of GNSs was put on a quartz 

boat and placed in the middle of the furnace (high temperature region). When the 

temperature was reached to 900 oC, a mixture of Ar and NH3 (with a ratio of 9:1) flow 

of 200 sccm was introduced. The furnace was turned off after 10 min and cooled down 

to room temperature. N-GNSs samples were collected from the boat. 

To prepare sulphur-doped graphene nanosheets (S-GNSs), 50 mg of graphene 

nanosheets were dispersed into acetone with 800 mg of p-toluenesulfonic acid (Alfa 

Aesar, 97%). Then the slurry was stirred at room temperature until the solvent was 

totally evaporated. And the resulting product was dried at 100 oC over night and finally 

was calcined at 900 oC in Ar flow of 200 sccm for 1 hour [10, 11]. 
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2.1.4 Synthesis of manganese oxide (MnO2) nanostructures 

 

 

Figure 2.2 A photo of an Anton Paar Synthos 3000 microwave synthesis system in our 

lab. 

Synthesis of manganese oxides using microwave-assisted hydrothermal method is 

performed in a Synthos 3000 microwave synthesis system (Anton Paar), as shown in 

Figure 2.2. In a typical synthesis, 1.5 mmol of KMnO4 was added to 20 ml deionized 

water to form a homogeneous solution. 0.5 ml of HCl (37 wt. %) was then added 

dropwise into the solution under magnetic stirring. After stirring for 20 min, the 

obtained solution was transferred to a 100 ml Teflon-lined ceramic-walled vessel. The 

autoclave was sealed and heated to different reaction temperatures (100, 140, and 180 

ºC) with the same holding time of 25 min in an Anton Paar Synthos 3000 microwave 

synthesis system. After the autoclave was cooled down to room temperature, the 
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sample was collected by centrifugation and washed with deionized water and absolute 

ethanol several times to remove the impurities, and dried in air at 80 ºC for 12 h. 

 

2.2 Characterizations 
 

The structure, composition, bonding environment, etc have been identified by a variety 

of microscopy and spectroscopy techniques, including scanning electron microscope 

(SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy 

(XPS), X-ray diffraction (XRD), and Raman spectroscopy; and the electrochemical 

activity and performance of the as-prepared samples were characterized by cyclic 

voltammetry (CV), and full battery testing (Figure 2.3). 

 

Figure 2.3 Characterization techniques in this research. 
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2.2.1 Physical characterizations 

 

The morphology of solid state materials can be observed by a scanning electron 

microscope (SEM) [12]. It is a powerful instrument to study the surface of 

nanostructures and produce high-resolution images for the details. The as-prepared 

samples were examined by SEM (Hitachi S-4800) operated at 5kV. The instrument is 

shown in Figure 2.4. 

 

 

Figure 2.4 A photo of a Hitachi S-4800 SEM in our lab. 
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Transmission electron microscopy (TEM) is a technique to study the structural 

information of nanomaterials [13]. During the operating, electrons will pass through 

the samples which are thin enough. Compared to SEM, the TEM can observe the 

information much deeper in the materials and by using high-resolution TEM 

(HRTEM), the lattice information as well as the diffraction patterns can be obtained. 

The regular TEM images were obtained by Hitachi H-7000, as shown in Figure 2.5; 

while the HRTEM images were obtained by JEOL JEM-2100, operating at 200 kV. 

 

 

Figure 2.5 A photo of a Hitachi H-7000 TEM in our lab. 
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X-ray photoelectron spectroscopy (XPS) is a spectroscopic technique to determine the 

surface chemistry, such as elemental composition, chemical states, and electronic state, 

etc. This technique is very surface sensitive since it can only measure the kinetic 

energy and number of electrons which escape from the top 1 to 10 nm of the  

material [14]. The XPS analysis was carried out by a Kratos Axis Ultra X-ray 

photoelectron spectrometer with Al Kα as the X-ray source at a base pressure of  

2×10–9 mbar, as shown in Figure 2.6. 

 

 

Figure 2.6 A photo of a Kratos Axis Ultra X-ray photoelectron spectrometer [15]. 
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X-ray diffraction (XRD) is a technique which reveals detailed information about the 

crystal structure, chemical composition and physical properties of materials [16]. The 

XRD patterns were recorded on a Bruker D8 Discover diffractometer employing a Co-

Kα source, as shown in Figure 2.7. 

 

 

Figure 2.7 A photo of a Bruker D8 Discover diffractometer [17]. 
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Raman spectroscopy is a spectroscopic technique used to obtain the vibrational, 

rotational information of chemical bonds in materials by determining the photon 

energy shift which is caused by the interaction between the laser light and the 

molecular vibrations [18]. Raman scattering spectra were recorded on a HORIBA 

Scientific LabRAM HR Raman spectrometer system equipped with a 532.4 nm laser, 

as shown in Figure 2.8. Typically, the ratio between peaks at ~ 1345 cm-1 (D band) 

and ~ 1570 cm-1 (G band) is used to evaluate the disorder in the carbon materials [19].  

 

 

Figure 2.8 A photo of a HORIBA Scientific LabRAM HR Raman spectrometer in our 

lab. 
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2.2.2 Electrochemical characterizations 

 

 

Figure 2.9 A photo of an Autolab potentiostat/galvanostat (Model, PGSTAT-30, 

Ecochemie, Brinkman Instruments) with rotation control (MSR, Pine Instruments). 

 

The electrocatlytic activity is measured by cyclic voltammetry (CV) tests conducting 

in a three-electrode cell. A platinum wire was used as the counter electrode. A silver 

wire immersed into 0.1 mol dm-3 AgNO3 in tetraethylene glycol dimethyl ether 

(TEGDME) solution, connected to the main solution by a glass frit, was used as 

reference electrode. A glass carbon disk (0.196 cm2, Pine Inc.) covered with catalyst 

thin film was used as the working electrode. Typically, 2 mg of GNSs or N-GNSs,  

2 mg of Polytetrafluoroethene (PTFE) (Sigma-Aldrich, 60 wt.%) were suspended in a 

30 vol. % 2-propanol (Sigma-Aldrich) solution in deionized water and ultrasonically 
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blended for 30 min. 10 μL of the suspension was dropped on the disk electrode and 

dried at 80 °C in vacuum for 1 h. CV curves were recorded by scanning the disk 

potential from 3.5 to 2.0 V (0.1 mol dm-3 LiPF6 in TEGDME solution) at a scan rate of 

5 mV s-1 using an Autolab Potentiostat/Galvanostat (PGSTAT-30, Eco Chemie, 

Brinkmann Instruments) at room temperature (25 °C) (Figure 2.9). 

 

Swagelok type cells were used to test the battery performance [20]. Typically, GNSs 

or N-GNSs and Poly(vinylidene fluoride) (PVDF) (Alfa Aesar) with a weight ratio of 

9:1 were casted onto a separator (Celgard 3500) as cathode. The electrodes were cut to 

3/8 inch in diameter and the loadings of GNSs or N-GNSs were ~ 0.3 mg. The 

electrolyte was 1 mol dm-3 LiPF6 dissolved in TEGDME solution. The 

discharge/charge characteristics were performed using an Arbin BT-2000 battery 

station in a voltage range of 2.0-4.5 V in a 1 atm oxygen atmosphere at room 

temperature (25 °C) (Figure 2.10). Electrochemical impedance spectroscopic (EIS) 

analysis was conducted to study the electrode polarization. Electrochemical impedance 

spectra were recorded in the frequency range of 0.01-105 Hz using a VMP3 

Potentiostat (BioLogic Science Instruments). The resulted spectra were fitted by 

ZView software. 
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Figure 2.10 (a) A diagram illustration of swagelok type cells, (b) a photo of an Arbin 

BT-2000 battery test station. 
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Chapter 3  

3 Carbon Black Cathodes for Lithium Oxygen Batteries: 
Influence of Porosity and Heteroatom-Doping* 

 

The key component of lithium-air batteries is the porous cathode in which the 

reactions take place during discharge and charge processes. The discharge product 

deposits on the surface of the carbon cathode, causing pore blocking and volume 

reducing, which limits oxygen access to the inner part of electrode, hence terminate the 

discharge reactions. Therefore, the air electrode structure is an essential factor for 

determining the discharge performance. Carbon black powders have been widely used 

as cathode materials due to their abundance and low price, however, the detailed 

influence of the material structure on the performance is not very clear. 

In this chapter, commercial carbon black was treated under different atmospheres and 

the resultant samples were employed as cathode materials for lithium-oxygen batteries. 

The advantages of the carbon cathode designed in this study are that all structural and 

surface parameters of the carbon electrode are obtained from only one kind of carbon 

black by using various treatments. It was demonstrated that the porosity changed 

tremendously as the treating time increases. The parameters that influenced the battery 

performance were identified And it was found that the specific surface area of 

mesopores was the main factor determining the battery performance, while nitrogen- 

or oxygen-bearing functionalities, introduced during heat-treatment or by contact with 

air after pyrolysis, have little or no influence on the battery performance. 

  

                                                 
*A version of this chapter has been accepted for publishing in Carbon. 
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3.1 Introduction 
 

Lithium oxygen battery is one of the most promising energy storage candidates for 

meeting the future demands of the electric vehicles (EVs) or hybrid electric vehicles 

(HEVs) [1,2]. However, the challenges for this battery system, such as the rate 

capability, cycle life, power performance, etc. should be overcome before lithium 

oxygen batteries can be used in practical applications [3]. It is reported that during 

discharge process of the battery, the product, Li2O2, deposits on the surface of the 

electrodes and eventually blocks the path ways for electrolyte and oxygen 

transportation, terminating the discharge process. Therefore, the electrodes are directly 

determining the battery performance.  

To date, carbon materials are still the most studied cathode materials for lithium 

oxygen batteries, and efforts have been made to increase the oxygen solubility and 

diffusion, to decrease the accumulation of reaction products, and to create effective 

three-phase electrochemical interface of these materials [4-8]. For example,  

one-dimensional carbon materials (CNTs, CNFs) have been reported to exhibit good 

performance because they could form an interconnected porous electrode with high 

void volume [9, 10]. Graphene nanosheets, a two-dimensional material showed 

significantly improvement for the battery performance due to its unique morphology 

and structures [11-13]. It was also reported that heteroatom-doping to carbon 

nanotubes and graphene nanosheets further increased the battery performance because 

of the active sites introduced into the pristine samples [14-16]. Due to abundance and 

low cost, carbon black has also been extensively studied as a cathode in lithium 

oxygen batteries. For example, several carbon black powders have been studied by 

Xiao et al. [4] and the results suggested that the pore volume and the pore size affect 

the battery performance. Hall et al. [8] also suggested that electrode made of carbon 

aerogel with appropriate pore volume and pore diameter delivered high discharge 

capacity. The findings indicated that the limited discharge capacity was associated to 

pore clogging as claimed by others [17]. However, recently Luntz et al. [18, 19] 
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reported that the electrical passivation caused by the formation of discharge product 

layer on the electrode was the limiting factor by using the electrochemical experiments 

and modeling. They found that even a very thin layer (4-5 nm) of the insulated film of 

Li2O2 was sufficient to terminate the discharge reaction due to the increased electrical 

resistance at the electrode/electrolyte interface, then preventing further O2 reduction. 

This would imply that the specific capacity should be related to the effective carbon 

surface area, accessible to the electrolyte and oxygen.  

In the present paper, various carbons all derived from the same starting commercial 

pristine carbon black (N330) were obtained by treating this carbon black in different 

treating atmospheres and for different times. The resulting carbons have been used as 

cathode in lithium oxygen batteries, revealing that the discharge capacity is 

proportional to the specific surface area of mesopores in these carbon electrodes. For 

the first time, the influence of various parameters resulting from the heat-treatment of 

the same starting carbon black, such as the content of disorganized carbon and 

heteroatom-doping effects, is studied in detail as well on the performance of the 

lithium oxygen battery. 
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3.2 Experimental 
 

3.2.1 Sample preparation 

Commercial N330 furnace carbon black (from Sid Richardson Carbon Corporation) 

was used as the starting material. It was heat-treated under NH3 or CO2 (with or 

without H2) atmospheres. The percentage of mass that was lost during the heat-

treatment, W, was calculated as follows: 

ܹ ൌ ௧ ௦௦ – ௦௦
௧ ௦௦

 ൈ 100   (3.1) 

 

3.2.1.1 Samples treated by NH3 

500 mg of carbon black powder spread in a fused silica boat was pyrolysed in a fused 

silica reactor under NH3 at 1050 oC until the desired mass losses (10, 35, 54, 75, and 

85%) were obtained. For the 75 and 85% mass losses, the samples were made with 

several pyrolysis to obtain around 150-200 mg of final powder. 

 

3.2.1.2 Samples treated by CO2 (with or without H2) 

500 mg of carbon black spread in a fused silica boat was pyrolysed in a fused silica 

reactor under CO2 at 1050 oC until the desired mass losses (13, 35, 50, and 75%) were 

obtained. For the 75% mass loss, the sample was again made with several pyrolysis to 

obtain around 150-200 mg of final powder. These samples were further pyrolysed 

under H2 at 950 oC to remove oxygen. It is possible that some oxygen was introduced 

in the sample by simple contact with air after pyrolysis.  

 



54 

 

3.2.2 Physical characterizations 

The morphologies of the samples were characterized by Hitachi S-4800 field-emission 

scanning electron microscope (SEM) operated at 5.0 kV. N2 adsorption/desorption 

isotherms were obtained using a Folio Micromeritics TriStar II Surface Area and Pore 

Size Analyser. The nitrogen and oxygen contents of the carbon materials were 

determined by Kratos Axis Ultra Alα X-ray photoelectron spectroscopy (XPS). Raman 

scattering spectra were recorded on a HORIBA Scientific LabRAM HR Raman 

spectrometer system equipped with a 532.4 nm laser. 

 

3.2.3 Electrochemical measurements 

Cathodes were prepared by casting a mixture of carbon materials and poly(vinylidene 

fluoride) (PVDF) (Alfa Aesar) with a weight ratio of 9:1 onto a separator 

(Celgard3500). The electrodes were 3/8 inch in diameter and the loadings were  

~ 0.3 mg. Swagelok type cells composed of lithium foil anode, Celgard 3500 separator, 

different cathodes and a stainless steel mesh as current collector were used to carry out 

the electrochemical measurements. The electrolyte was 1 mol LiCF3SO3 dissolved in 

tetraethylene glycol dimethyl ether (TEGDME). The discharge/charge characteristics 

were performed by using an Arbin BT-2000 battery station in a 1 atm oxygen 

atmosphere at room temperature (25 °C). 
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3.3 Results and Discussion 
 

 

Figure 3.1 SEM images and particle size distributions of carbon blacks with mass 

losses of (a, and b) 0%, (c, and d) 35%, and (e, and f) 75%. 

 

The morphology and the distribution of particle sizes of some of the samples resulting 

from the heat-treatment of N330 in NH3 are shown in Figure 3.1. The distribution of 
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particle sizes of the carbon black was obtained from the analysis of SEM micrographs 

based on about 300 particles. It can be seen that the shape of the particles is kept 

almost the same, even after a loss of 75% of the pristine N330 carbon mass. However, 

the particle size is decreasing after the heat treatment. Several large particles (> 40 nm) 

are observed at 0% mass loss but their number decreases at 75% mass loss, while the 

mean diameter of the maximum number of particles shifted from an initial value of  

40-45 nm, at 0% mass loss, to 25-30 nm after 75% mass loss. 

It is known that NH3 etches the carbon black at 1050 oC according to the following 

reactions [20]: 

23 HHCNNHC +→+ 　    (3.2) 

42 CHHC →+ 　     (3.3) 

The gasification reactions of carbon blacks results in decreasing particle sizes and the 

occurrence of porosity leading to an increasing specific surface area of the remaining 

carbon black. The total specific surface area, and the specific surface areas of micro-, 

and meso-pores of the samples have been measured as a function of mass loss. These 

results are presented in Figure 3.2a. It can be seen that the Brunauer-Emmett-Teller 

(BET) surface area and the mesopore surface areas of the samples both steadily 

increase as the mass loss increases. This behavior is different from that of the specific 

surface area of the micropores, which first increases, reaches a maximum, and then 

decreases as the mass loss increases. A formation mechanism of the porosity in carbon 

blacks has been well described by Jaouen et al [21, 22].According to these authors, the 

surface area of the pristine carbon black is only that of the outer spheres of the carbon 

particles with almost no pores; then, as gasification of carbon proceeds according to 

equations 2 and 3, disordered carbon is removed from the outer surface and some edge 

surface is created. As more disordered carbon is removed from the particle, the 

micropores become larger in size and deeper in length leading to the formation of 

mesopores. The surface area of mesopores increases as the treating time increases. It 
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has been reported that the catalytic activity of Fe/N/C catalysts used for oxygen 

reduction reaction at the cathode of proton exchange membrane (PEM) fuel cells is 

related to the microporosity of their carbon black support, since their most active sites 

are hosted in these micropores [23, 24]. However, in our case, it can be seen in  

Figure 3.2b (right Y axis) that, for lithium oxygen batteries, only the specific surface 

area of mesopores vs. mass loss curve well matches the behavior of the discharge 

specific capacity vs. mass loss curve (Figure 3.2b, left Y axis). This indicates that the 

surface area of mesopores plays the major role in determining the battery discharge 

performance.The correlation between discharge capacity and specific surface areas is 

further illustrated in Figure 3.2c, where it is indeed shown that the discharge capacity 

only increases nearly linearly with an increase of the surface area of the mesopores. 

Figure 3.2d shows the pore size distribution (PSD) curves of carbon blacks with 

different mass losses. As can be seen, for the pristine carbon black, only the pores 

centered at size of ~ 30 nm are present. They probably are voids between the carbon 

black particles. Even when the mass loss increases to 35%, the volume of pores having 

sizes between 2 and 4 nm only slightly increases, while the volume of pores having 

sizes centered at ~ 30 nm remains almost the same. It has been reported that the 

discharge product, Li2O2, would not deposit in micropores because the electrolyte 

could not have access to them [7]. Therefore, the discharge product would deposit on 

the surface of the voids between carbon particles. When the mass loss reaches 54%, 

not only a peak at ~ 3.5 nm appears in Figure 3.2d, but also the volume of the pore 

sizes in the range of 10-50 nm increases, as a result to the enlargement of micropores. 

As the pyrolysis time increases, the pore volume peaks at a pore size of ~ 3.8 nm, 

indicating that this is the main pore size in such carbon black when the mass loss is 

75%. As expected, the volume of the pore with sizes of 10-50 nm continues to increase 

in these conditions. When the mass loss increases from 75% to 85%, the volume of 

pore size at ~ 4 nm does not increase anymore, but the volume of pore sizes from  

10-50 nm increases a lot. This should be beneficial for discharge product 

accommodation. 
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Figure 3.2 (a) Total specific area (BET) and specific surface areas for micropores, 

mesopores, and macropores vs. mass loss during pyrolysis in NH3, (b) discharge 

capacity (left Y axis), the specific area of micropores, mesopores, and macropores 

(right Y axis) vs. mass loss, (c) discharge capacity vs. the specific area for micropores, 

mesopores, and macropores and (d) the pore size distribution (PSD) curves for carbon 

blacks with various mass loss. 

 

However, it can be seen in Figure SI-3.1 that the discharge capacity only slightly 

increases (~ 6%), while the volume of mesopores increases by more than 50%. From 

this observation, one may suggest that the very large increase in the volume of 

mesopores, when mass loss increases from 75 to 85%, is not more effective for 

accommodating discharge product deposition (Figure SI-3.1). While some of the 

pores are clogged as discharge product forms, passivation is the main issue for the 

cathode due to the low electrical conductivity of Li2O2. In order to study the effect of 
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effective surface area towards to discharge capacity, it is necessary to estimate the 

coverage of carbon surface by Li2O2 after battery discharge.  

Table 3.1 Carbon mass based discharge capacity, surface-normalized discharge 

capacity and current, and the corresponding number of Li2O2 monolayers deposited on 

the surface of mesopores for carbon blacks with different mass losses. 

Mass 
loss 
/ % 

Discharge 
capacity / 
mAh g-1 

Surface-normalized 
discharge capacity / 

μC cm-2 

Number of 
monolayers 

Surface-
normalized 

current / 
μA cm-2 

0 1062 5577 21.5 0.328 

10 1248 5349 20.6 0.268 

35 2051 4158 16.0 0.127 

54 2931 1641 6.3 0.035 

75 4773 1617 6.2 0.021 

85 5045 1600 6.2 0.020 

The discharge capacity based on carbon mass can be expressed to the  

surface-normalized discharge capacity based on the specific area of the mesopores. 

Knowing that 260 μC cm-2
carbon is the estimated normalized discharge necessary to 

obtain the deposition of 1 monolayer of Li2O2, the number of monolayers of discharge 

products can be estimated for our carbons [25]. It is shown in Table 3.1, the sample 

with 10% mass loss has a surface-normalized discharge capacity very similar to that of 

pristine carbon (~ 5500 μC cm-2). As the mass loss increases to 35%, the capacity 

decreases to 4158 μC cm-2 and the thickness of discharge product decreases from  

~ 7 nm to ~ 5 nm accordingly [26]. The reason for the decreasing thickness of 

discharge products on carbon samples may be due to the different cathodic polarization 

of the carbon surface caused by the various surface-normalized currents (last column 
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in Table 3.1) [27]. It is important to note that when the mass loss ≥ 54%, the capacity 

values drop to 1600-1650 μC cm-2 for these samples; these values suggest that about  

6 monolayers of Li2O2 are formed on the carbon surface, corresponding to a ~ 2 nm 

thick layer. It is expected that only a thin layer of product can stop the discharge 

reaction, which supports the hypothesis proposed by Luntz et al [6]. As can be seen 

from Figure 3.3, the estimated thickness of discharge product on carbon surface is 

smaller than the average pore size of each sample, suggesting that a too large pore size 

in the mesoporous range leads to a less efficient use of mesopore volumes, which is 

consistent with our observations described above. Figure SI-3.2 shows the curve of 

discharge specific capacity vs. mesopore size. One can see that when the pore size is 

about 3.5 nm, the capacity is maximum, indicating that it is the desired pore size 

considering the passivation.  

 

Figure 3.3 Estimated thickness of the discharge product on the surface (left Y axis) 

and pore size (right Y axis) of carbon blacks with different mass losses. 

 

So far, we have shown that the specific surface area of carbon black mesopores is an 

important factor determining the lithium oxygen battery performance. These 
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mesopores were obtained by pyrolysing N330 in NH3 at 1050 °C. Now, it will be 

shown that similar results are also obtained when the porosity in N330 is generated by 

pyrolysing at 1050 °C the same carbon black in CO2 (or CO2 + H2; to remove at least 

partially the oxygen-bearing functionalities introduced by the pyrolysis under CO2). 

Indeed, as seen in Figure SI-3.3, both groups of samples show that the specific surface 

areas of mesopores are also proportional to the discharge capacities. The pore size 

distribution curves are shown in Figure SI-3.4 and it can be seen that all the curves 

steadly shift upwards for pore volumes in the small and large pore diameter regions. 

However,  the amount of pores of which size at ~ 3.8 nm is relatively less in the carbon 

blacks refer to the pores in the diameter range of 10-50 nm. From Table SI-3.1, 

similar results about the deposit of discharge products as a thin film are also 

demonstrated for the carbon blacks treated by CO2 with/without H2, and the thickness 

of discharge products is very similar to that of the carbon samples treated by NH3, 

especially at the mass losses > 40% (Figure SI-3.5). 

Raman spectroscopy is a powerful technique to identify the structure of carbon blacks. 

Figure SI-3.6 shows the Raman spectra of the NH3-treated samples. Each spectrum 

was deconvoluted into five peaks as suggested by Sadezky et al [28]. The D band  

(~ 1365 cm-1) and G band (~ 1590 cm-1) correspond to disordered and graphitic carbon 

phase, respectively. The peaks at about 1190, 1530, and 1620 cm-1 are associated with 

the sp3 carbon, amorphous carbon, and another band accounting for structural disorder, 

respectively. The width at half maximum (fwhm) of the D band, WD, in the Raman 

spectroscopy of the carbon black indicates the degree of structural disorder in the 

samples [29].  
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Figure 3.4 (a) Raman spectrum of the N330 carbon black, (b) Width at half maximum 

(fwhm) of D peak of carbon blacks vs. mass loss, and (c) The specific capacity vs. the 

fwhm. 
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As can be seen from Figure 3.4a, WD decreases from 200 to 118 cm-1 as the mass loss 

increases from 0 to 85%. The constant decrease of the WD clearly indicates the 

decrease of the amount of disordered carbon phase in the samples. Figure 3.4b depicts 

the discharge specific capacity vs. WD; it is obviously that the capacity increases as the 

amount of disordered carbon phase decreases in the carbon black. This finding is 

interesting because in our previous study about graphene nanosheets, the electrode 

made of nitrogen doped graphene nanosheets which have more defects delivered 

higher discharge capacity than pristine sample [12, 13, 15]. In this study, we believe 

that the different behaviour comes from the nature of the carbon black and graphene 

nanosheets. 

A model for heat treatment of carbon blacks under NH3 has been proposed by Jaouen 

et al [21, 22] and is shown in Figure SI-3.7. The pristine carbon black particle has no 

pores and consists of disordered carbon and graphitic crystallites. Both disordered 

carbon and graphitic crystallite edges contribute to the D band in the Raman spectrum. 

At the beginning of the heat treatment, NH3 only reacts with the outer surface of the 

disordered carbon, and it will take time tc to remove all the disordered carbon from 

shell 1, thus micropores are created. However, as the heat treatment continues, NH3 

reacts not only with the disordered carbon on shell 2, but also with the edges of the 

graphitic crystallites on shell 1. It was found that, at 950 °C, NH3 reacts about ten 

times faster with disordered carbon than with graphitic crystallites. As carbon black 

reaction with NH3 proceeds, the microporous surface area increases therefore rapidly, 

but the obtained micropores become larger at a slower rate. It is important to notice 

that, at certain time, the outmost graphitic crystallite layer will vanish, leading to a 

decrease in the particle diameter, and the micropores in that layer will vanish as well. 

From the calculations made with this model, it is predicted that, in a carbon black like 

N330, the surface area of micropores will increase from 0 to 30-35% mass loss, and 

then decrease (from mass loss > 40%). The prediction matches very well our 

experimental results as shown in Figure 3.2a. Due to the decreased amount of 

disordered carbon and graphitic crystallite edges, WD will continue to decrease as the 

treating time increases.  
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This work also enabled us to study the correlation (if any) between the nitrogen 

content of the carbon pyrolysed in NH3 and the battery performance since nitrogen 

doping into the carbon framework and the occurrence of N-bearing functional groups 

has already been reputed to have a favorable influence on the performance of lithium 

oxygen batteries [14-16]. Figure SI-3.8 shows the XPS survey spectra of the carbon 

blacks as the mass loss increased. As can be seen, nitrogen atoms were successfully 

doped into carbon blacks and the presence of oxygen may also be noticed at various 

amounts after the heat-treatments in NH3 (Figure 3.5). It is obvious that nitrogen 

content also follows the same trend as the microporosity vs. mass loss, that is it 

increases from 0 to 30-35% mass loss, and then decrease for mass loss > 40%. Most of 

the nitrogen atoms are therefore located in the micropores. As these micropores have 

little influence on the performance of lithium oxygen batteries, the nitrogen doped sites 

are therefore not effective for improving battery performance (Figure 3.5a). 

Experimental results and density functional theory (DFT) calculations have shown that 

oxygen-containing functional groups on graphene electrode play an important role for 

battery performance [13]. However, it can be seen in Figure 3.5b that the  

oxygen-bearing functional groups here also have no influence on the battery 

performance. The maximum of the oxygen surface concentration occurs at 54% mass 

loss, out of phase with the development of the microporous surface area, and simply 

decreases for mass losses larger than 54%, while the specific capacity of the carbon 

material continues to rise with the development of the mesoporous surface area. 
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Figure 3.5 (a) Nitrogen surface concentrations (left Y axis), and (b) oxygen surface 

concentrations (left Y axis), the specific area of the micropores (right Y axis) of the 

carbon blacks with different mass losses. 

 

 



66 

 

3.4  Conclusions 
 

In summary, commercial carbon black (N330) was treated under various atmospheres 

(NH3, CO2 and CO2/H2). The total and mesopore surface areas increased as the treating 

time increased while the micropore surface area only increased until the mass loss 

reached 35% and then decreased. It is suggested that the surface area of mesopores 

plays an important role for the discharge capacity of lithium oxygen batteries due to 

the passivation effect of discharge product film on the carbon surface. Nitrogen and 

oxygen-containing functional groups introduced by the gas treatments or by contact of 

the pyrolysed product with air, have very little or no influence on the performance of 

these carbon materials in lithium oxygen batteries. However, too large pore size in the 

mesoporous range leads to a less efficient use of mesopore volumesand the the desired 

pore size is about 3.5 nm considering the passivation effect. These findings established 

a correlation between the structure of carbon black and battery discharge capacity, 

which provides new insights into further designing or optimizing electrode materials 

for lithium oxygen batteries. 
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Supporting Information 

 

 

Figure SI-3.1 (a) Discharge capacity (left Y axis), total volume and specific volume 

for micropores and mesopores (right Y axis) vs. mass loss, (b) discharge capacity vs. 

the total volume and specific volume for mesopores for carbon blacks. 
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Figure SI-3.2 The discharge specific capacity vs. the average mesopore sizes of 

carbon blacks. 
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Figure SI-3.3 (a and b) Total specific area (BET) and specific surface areas for 

micropores, mesopores, and macropores vs. mass loss, (c and d) Discharge capacity 

(left Y axis), the specific area of micropoes, mesopores, and macropores (right Y axis) 

vs. mass loss during pyrolysis, and (e and f) discharge capacity vs. the specific area for 

micropores, mesopores, and macropores for carbon blacks treated by CO2 (left column) 

and CO2/H2 (right column). 
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Figure SI-3.4 The pore size distribution (PSD) curves for carbon blacks treated by (a) 

CO2 and (b) CO2/H2 with different mass losses. 
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Table SI-3.1 Carbon mass based discharge capacity, surface-normalized discharge 

capacity/current, and the corresponding number of Li2O2 monolayers on the surface of 

carbon blacks treated by CO2 and CO2/H2 with different mass losses. 
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Figure SI-3.5 Estimated thickness of the discharge product on the surface (left Y axis) 

and pore size (right Y axis) of carbon blacks treated by (a) CO2 and (b) CO2/H2 with 

different mass losses. 

 



77 

 

 

Figure SI-3.6 Raman spectra of the carbon blacks with different mass losses during 

pyrolysis under NH3. 
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Figure SI-3.7 Etching of carbon black by NH3 as a function of time [21, 22]. 
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Figure SI-3.8 XPS survey spectra of the carbon blacks with different mass losses 

during pyrolysis under NH3. 
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Chapter 4  

4 Nitrogen-Doped Carbon Nanotubes as Novel 
Cathode for Lithium-Air Batteries* 

 

As reported, the structure of the air electrode is a critical factor in determining the 

discharge performance. Compared to conventional carbon blacks, one-dimensional 

(1D) carbon nanotubes (CNTs) possess unique physical and chemical properties, 

including higher electrical conductivity, surface area and mechanical properties which 

are suitable for lithium-air battery. More importantly, it is found that the 

electrocatalytic activity for oxygen reduction reaction (ORR) of the CNTs was 

significantly increased after nitrogen doping. Since the discharge of lithium-air battery 

also involved the ORR, it is interesting to employ nitrogen-doped carbon nanotubes 

(N-CNTs) as cathode materials in this system which not only tailor the porosity of the 

electrode, but also catalyze the cathode reaction, increasing the battery performance. 

In this chapter, N-CNTs were synthesized by a floating catalyst chemical vapor 

deposition (FCCVD) method. Various techniques including FESEM, TEM, XRD, XPS 

and Raman spectroscopy revealed the morphology and structure of CNTs and N-CNTs 

as well as confirmed the existence of incorporated nitrogen (10.2 at. %) in N-CNTs.  

In comparison to CNTs, N-CNTs were investigated as cathode material for lithium-air 

batteries and exhibited a specific discharge capacity of 866 mAh g-1, which was about 

1.5 times as that of CNTs. Our results indicated that the N-CNTs electrode showed 

high electrocatalytic activities for the cathode reaction therefore improved the lithium 

air battery performance. 

  

                                                 
*A version of this chapter has been published in Electrochemistry Communications, 2011, 13, 668-672. 
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4.1 Introduction 
 

Lithium-air batteries have been attracting much attention due to its extremely high 

theoretical specific energy [1]. The cathode active material, oxygen, is not stored in the 

batteries, but can be absorbed from the environment during discharge, making these 

systems serious contenders to meet the rapid growing requirements of the hybrid 

electric vehicles (HEVs) and electric vehicles (EVs) [2]. Many work indicated that the 

battery performance strongly depends on the carbon cathode [3-5]. For example, Xiao 

et al. found that the surface area and mesopore volume of carbon powder significantly 

affected the discharge capacity [6]. Mirzaeian et al. found that the battery performance 

depended on the morphology of the carbon as well [7]. Therefore it is important to 

develop new carbon-based electrodes to improve the kinetics of the air cathode thus 

enhance the battery performance. 

Recently, nitrogen-doped carbon powder as cathode material in lithium-air batteries 

showed improvement to the discharge capacity because of the high surface area, 

porosity and electrocatalytic activity [8]. This is because the doped heteroatoms are 

available to tailor the chemical and electronic nature of carbon based materials [9-11]. 

Recent works have shown that the N-CNTs exhibit excellent electrocatalytic activity 

for oxygen reduction reaction (ORR) in aqueous electrolyte [12-15]. Zhang et al. 

reported that battery made with carbon nanotube/nanofiber mixed buckypapers 

cathode delivered a high discharge capacity [16]. However, to our best knowledge, no 

research on N-CNTs as cathode for lithium air batteries was reported. 

In this work, for the first time, we reported to employ N-CNTs as a novel cathode for 

lithium-air batteries. It was demonstrated that nitrogen-doping into carbon nanotubes 

not only increased the discharge capacity but also enhanced the reversibility in the 

charge/discharge process. This finding is opening a rational and promising direction in 

developing carbon electrode for lithium-air batteries. 
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4.2 Experimental 
 

4.2.1 Materials synthesis 

CNTs with diameters of 40-60 nm were purchased from Shenzhen Nanotech., China. 

N-CNTs were prepared in our group by a floating catalyst chemical vapor deposition 

(FCCVD) method, as described before [11]. Imidazole was used as carbon and 

nitrogen source, and ferrocene as catalyst precursor. At 850 oC, ferrocene decomposed 

into iron as the catalyst for carbon nanotube growth and the nitrogen atoms 

incorporated into the graphite layers to yield N-CNTs. 

 

4.2.2 Physical characterizations 

The morphologies and structures of CNTs and N-CNTs were characterized by a 

Hitachi S-4800 field emission scanning electron microscopy (FESEM) and a Hitachi 

H-7000 transmission electron microscopy (TEM). Powder X-ray diffraction (XRD) 

patterns were recorded by Rigaku RU-200BVH diffractometer employing a Co-Kα 

source (λ=1.7892 Å). Raman scattering spectra were recorded on a HORIBA Scientific 

LabRAM HR Raman spectrometer system equipped with a 532.4 nm laser. N2 

adsorption/desorption isotherms were obtained using a Folio Micromeritics TriStar II 

Surface Area and Pore Size Analyser. The nitrogen content in N-CNTs was 

determined by a Kratos Axis Ultra X-ray photoelectron spectrometer with Al Kα as the 

X-ray source. 
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4.2.3 Electrochemical measurements 

Cathode was prepared by casting a mixture of CNTs (or N-CNTs), and PVDF (Alfa 

Aesar) with a weight ratio of 9:1 onto a separator (Celgard C3500). The electrode is 

3/8 inch in diameter and the carbon loadings were 0.5 ± 0.1 mg. The electrolyte was 1 

mol LiPF6 (Sigma Aldrich, 99.99%) dissolved in propylene carbonate (PC) (Sigma 

Aldrich, anhydrous, 99.7%)/ethylene carbonate (EC) (Alfa Aesar, anhydrous, 99%) 

(1:1 weight ratio).  

Swagelok cells composed of lithium foil, Celgard 3500 separator, different cathodes 

and a stainless steel (SS) mesh as current collector were assembled in an argon-filled 

glove box (MBraun Inc.) with the moisture and oxygen concentration < 1 ppm. The 

cells were gastight except for the SS mesh window that exposed to a 1 atm O2 

atmosphere. The discharge/charge characteristics were performed by using an Arbin 

BT-2000 battery station in a voltage range of 2.0-4.5 V. Cyclic voltammetry 

measurements were carried out by using a CHI 600c electrochemical work station at a 

scan rate of 0.2 mV s-1 in a voltage range of 2.0-4.5 V at room temperature. 

To study the catalytic activity of CNTs and N-CNTs on the charge decomposition of 

Li2O2, the cathode was constructed by using the method previously reported [17]. The 

cathode was made by casting a mixture of CNTs or N-CNTs, Li2O2 (Alfa Aesar), and 

PVDF at a weight ratio of 7:2:1 onto a Celgard separator. The electrodes were 

incorporated into Swagelok cells and charged at a current density of 75 mA g-1 (of 

carbon) at room temperature. 
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4.3 Results and Discussion 
 

Figure 4.1 shows SEM and TEM images of CNTs and N-CNTs. Both samples have 

uniform distributions in diameters (Figure 4.1a and 4.1c). As shown in Figure 4.1b 

and 4.1d, the diameter of CNTs is about 40-50 nm, while 50-60 nm for N-CNTs. The 

typical bamboo-like structure in N-CNTs indicates that nitrogen atoms were 

introduced into the carbon network [11].  

 

Figure 4.1 SEM and TEM images of CNTs (a, and b) and N-CNTs (c, and d). 

 



85 

 

XRD patterns of CNTs and N-CNTs are shown in Figure 4.2a. The diffraction peaks 

at around 30° and 52° are corresponding to the (002) and (100) facets of hexagonal 

graphitic carbon, respectively. However, the diffraction peaks of N-CNTs slightly 

shifted to lower 2θ values than those of CNTs, which is due to the distortion in the 

graphene layers resulting from the incorporation of nitrogen [18].  

 

Figure 4.2 (a) XRD patterns of the CNTs and N-CNTs, (b) Raman spectra of the 

CNTs and N-CNTs, (c) XPS survey spectrum of the N-CNTs, and (d) N2 adsorption–

desorption isotherms for the CNTs and N-CNTs. The inset of (a) is the XRD patterns 

in the range between 28° and 34°. 

 

Figure 4.2b shows the Raman spectra of CNTs and N-CNTs. Both samples exhibit 

two obvious peaks at ~ 1345 and ~ 1570 cm-1, corresponding to the D and G bands, 

respectively. The D band denotes the disordered graphite structure, whereas the G 

band indicates the presence of crystalline graphitic carbon. The intensity ratio of D and 
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G band (ID/IG) is used to evaluate the disorder in the materials [19]. The ID/IG ratios of 

CNTs and N-CNTs are 0.53 and 0.85, respectively. The higher ID/IG ratio implies more 

defects in N-CNTs. 

The XPS survey spectrum is shown in Figure 4.2c. Three strong peaks at 282, 398, 

and 529 eV are attributed to C1s, N1s and O1s, respectively. The atomic concentration 

of N can be estimated by the peak area ratio between N and C+N [20]. Therefore, ca. 

10.2% nitrogen was introduced to the graphene layers in the as-prepared N-CNTs. 

The N2 adsorption–desorption isotherms for the CNTs and N-CNTs are shown in 

Figure 4.2d. Both samples are found to yield type-I isotherm, which indicates the 

presence of micropores and mesopores [21]. The BET surface area and average pore 

volume for CNTs are 44.95 m2 g-1 and 0.081 cm3 g-1 while for N-CNTs are  

40.92 m2 g-1 and 0.073 cm3 g-1, respectively, which is due to the different diameters. 

But both samples have similar pore size, ~ 7.3 nm. 

As shown in Figure 4.3a and 4.3b, the N-CNTs deliver an initial discharge capacity of 

866 mAh g-1, while 590 mAh g-1 for CNTs. Clearly, N-CNTs show a capacity about 

1.5 times higher than that of the CNTs, although N-CNTs have lower BET surface 

area and pore volume [6]. The high specific capacity is resulting from the 

electrocatalytic activity of N–CNTs itself which facilitates the cathode reactions during 

discharge [8].  

The discharge average voltage plateau of N-CNTs is ~ 2.52 V, which is higher than 

that of CNTs, ~ 2.41 V. The difference of ~ 0.1 V voltage between the N-CNTs and 

CNTs electrode remains through the whole discharge process, indicating a higher ORR 

activity on the N-CNTs electrode. To further compare the catalytic activity of the 

electrodes, cyclic voltammogram measurements were conducted. It can be seen from 

the CV curves in Figure 4.3c and 4.3d that the onset voltage and peak voltage of N-

CNTs are ~ 2.95 V and ~ 2.26 V, while for CNTs are ~ 2.83 V and ~ 2.14 V, 

respectively, which is consistent with the results in Figure 4.3a and 4.3b. 
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Figure 4.3 The voltage profiles of (a) CNTs and (b) N-CNTs electrodes cycled in a 

voltage range of 2.0~4.5 V at a current density of 75 mA g-1 in the first three cycles; 

CV curves of (c) CNTs and (d) N-CNTs electrodes at a scan rate of 0.2 mV s-1; (e) 

Variation of Voltage on charging cells with CNTs and N-CNTs electrodes at a density 

of 75 mA g-1. Cathode composition: CNTs or N-CNTs/Li2O2/binder (70/20/10); (f) 

Voltage profiles of N-CNTs electrodes at current densities of 75, 150, and 300 mA g-1. 



88 

 

It is noticed that the discharge capacities of the second and the third cycle of N-CNTs 

are 264 and 133 mAh g-1, respectively, whereas the capacity of CNTs electrode drops 

dramatically to less than 45 mAh g-1 in the second and the third cycle, therefore CNTs 

cathode showed limited reversibility (Figure 4.3a and 4.3b). In order to compare the 

reversibility of CNTs and N-CNTs, their charge behavior for the electrochemical 

decomposition of the discharge product, Li2O2, was shown in Figure 4.3e. The  

N-CNTs have lower average charging plateau voltage (4.22 V) and higher capacity 

(630 mAh g-1 of Li2O2) than that of CNTs. These results reveal that the N-CNTs are 

more efficient for Li2O2 decomposition, indicating a high catalytic activity in the 

charge process. The discharge capacities of N-CNTs electrode at different current 

densities is shown in Figure 4.3f. With the increase of the current density, the 

discharge capacity decreases, 866, 525, and 374 mAh g-1 at current density of 75, 150, 

and 300 mA g-1, respectively. This is because the electrochemical polarization 

becomes much more significant at high current densities [22].  

The role of nitrogen doping in the carbon nanotubes for the electrocatalytic activities 

in lithium-air batteries is not clear now, and the understanding about the catalytic 

behavior of N-CNTs for ORR in nonaqueous electrolyte is scarce to date. Maybe the 

doped-nitrogen with lone electron pair could provide additional negative charges 

which enhance the interaction between carbon structures and foreign molecules and 

increase the conductivity, thus improves the electrode reaction for lithium air batteries 

[14-15, 23-24]. The related work is carrying out in our group to understand the doping 

effect. 
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4.4 Conclusions 
 

The electrochemical performance of CNTs and N-CNTs electrodes were studied in 

lithium-air battery. The N-CNTs electrode has a specific discharge capacity of  

866 mAh g-1, which is about 1.5 times as that of CNTs. It was demonstrated the N-

CNTs have much better electrocatalytic activity for Li2O2 decomposition, therefore 

improve the reversibility for lithium air batteries. The performance improvement of N-

CNTs results from heteroatom nitrogen doping. The detailed fundamental mechanism 

is under study. 
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Chapter 5  

5 Superior Energy Capacity of Graphene Nanosheets 
for Nonaqueous Lithium-Oxygen Battery* 

 

The discharge product, Li2O2, of lithium-air batteries is insoluble in the organic 

electrolyte, but deposits on the surface of carbon cathode. When the porous structure is 

clogged by Li2O2, the transportation of oxygen is limited, affecting the battery 

performance. It is important to design high surface area matrix with proper porous 

structures having effective three-dimensional (3D) three-phase (solid, liquid, and gas) 

interface which is ideal for the electrochemical reactions in the cathode.  

Graphene nanosheets (GNSs) have attracted many interests due to its excellent 

mechanical, electrical, thermal and optical properties. More importantly, this two-

dimensional (2D) material is a candidate for constructing and optimizing air electrode 

structure and properties, including porosity which is for oxygen diffusion as well as 

the catalytic activity for cathode reactions. 

In this chapter, GNSs were synthesized by a modified Hummers’ method and the  

as-prepared sample was used as cathode materials in lithium-oxygen battery. It was 

demonstrated that the GNSs electrode delivered an extremely high discharge capacity 

in comparison to carbon powders, which was attributed to its unique morphology and 

structure. 

 

  

                                                 
*Aversion of this chapter has been published in Chemical Communications, 2011, 47, 9438–9440. 
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5.1 Introduction 
 

Nonaqueous lithium-oxygen/air battery is one of the most promising energy storage 

systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs) because of its 

extremely high theoretical energy density [1-4]. The porosity of the air electrode plays 

an important role in the lithium-air battery performance because the insoluble products 

are deposited in the electrode, which block O2 from diffusing to the reaction sites [5-9]. 

Recent work also showed that the oxygen reduction reaction (ORR) in the carbon 

electrode significantly affected its performance [10-15]. Therefore, it is important to 

develop new carbon electrodes to improve the kinetics and enhance the energy 

capacity. 

Graphene nanosheets (GNSs) have attracted great attention for energy storage 

applications [16-19]. Especially, they have been widely used as catalyst supports or 

non-noble catalysts for fuel cells [20-23]. Recently, Zhou et al. examined the GNSs as 

air electrodes in lithium-air batteries with hybrid electrolyte and found that GNSs 

showed good electrocatalytic activity for ORR in aqueous electrolyte, resulting in high 

performance [24]. They also developed an idea of applying a graphene-like thin film 

on a ceramic state electrolyte in a lithium-air battery [25]. However, to our best 

knowledge, no research on GNSs as cathode for nonaqueous lithium-oxygen batteries 

has been reported. 

Herein, for the first time, we employed GNSs as cathode active materials in 

nonaqueous lithium-oxygen batteries and found that GNSs delivered an extremely 

high discharge capacity. 
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5.2 Experimental 
 

5.2.1 Material synthesis 

Graphene nanosheets (GNSs) were prepared by the oxidation of graphite powder using 

the modified Hummers’ method. Typically, graphite powder (1 g), sodium nitrate 

(0.75 g) and potassium permanganate (4.5 g) were added to concentrated sulphuric 

acid (37.5 mL) and stirred for 2 h in an ice water bath. Then the mixture was stirred for 

five days at room temperature. 100 mL of 5 wt% H2SO4 and 3 g of 30 wt% H2O2 were 

added into the above mixture in sequence under stirring with interval of 1 h. After 

stirring for 2 h, the sample was filtered and washed until the pH=7. The as-received 

sample was dried and heated at 1050 oC for 30 s under Ar to produce GNSs. 

 

5.2.2 Physical characterizations 

The morphology and structure of GNSs were characterized by a Hitachi S-4800 field 

emission scanning electron microscopy (SEM) and a Hitachi H-7000 transmission 

electron microscopy (TEM). N2 adsorption/desorption isotherms were obtained using a 

Folio Micromeritics TriStar II Surface Area and Pore Size Analyser. The XRD pattern 

was recorded by a Bruker-AXS D8 Discover diffractometer employing a Co-Kα 

source (λ=1.7892 Å). 

 

5.2.3 Electrochemical characterizations 

Cathode was prepared by casting a mixture of carbon materials (GNSs, BP-2000, or 

Vulcan XC-72), and PVDF (Alfa Aesar) with a weight ratio of 9:1 onto a separator 

(Celgard 3500). The electrode is 7/16 inch in diameter and the loadings were 0.3 mg. 

Swagelok type cells composed of lithium foil anode, Celgard 3500 separator, different 

cathodes and a stainless steel (SS) mesh as current collector were used to carry out the 
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electrochemical measurements. The electrolyte was 1 mol LiPF6 dissolved in 

propylene carbonate (PC)/ethylene carbonate (EC) (1:1 weight ratio). The 

discharge/charge characteristics were performed by using an Arbin BT-2000 battery 

station in a voltage range of 2.0-4.5 V in a 1 atm oxygen atmosphere at room 

temperature (25 °C). 

 

 

5.3 Results and Discussion 
 

Figure 5.1 shows the discharge/charge curves of the lithium-oxygen batteries with 

GNSs, BP-2000 and Vulcan XC-72 as cathodes at a current density of 75 mA g-1. The 

discharge capacities of the BP-2000 and Vulcan XC-72 electrodes are 1909.1 and 

1053.8 mAh g-1, respectively. The GNSs electrode delivers a capacity of  

8705.9 mAh g-1, which is the highest capacity of any carbon-based materials in 

lithium-oxygen batteries ever reported so far. Moreover, it also shows a higher average 

discharge plateau and charge capacity than BP-2000 and Vulcan XC-72 electrodes, 

indicating a higher catalytic activity for cathode reactions [11, 12]. 
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Figure 5.1 Discharge-charge performances of lithium-oxygen batteries with (a) GNSs, 

(b) BP-2000, and (c) Vulcan XC-72 cathodes at a current density of 75 mA g-1. 

 

The SEM and TEM images of GNSs electrode before and after discharge are shown in 

Figure 5.2. As shown in Figure 5.2a and 5.2b, the GNSs have a curly morphology 

with a thin, wrinkled structure. These unique structures provide ideal porosity which is 

suitable for the electrolyte wetting and the O2 diffusion, thus improving the efficiency 

of the catalyst reactions. The electrode with these structures not only increases the 

electrochemically accessible site, but also provides a large diffusion path for the O2 

mass transfer, therefore, improving the discharge capacity dramatically. 
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Figure 5.2 SEM and TEM images of GNSs electrodes before (a, and b) and after (c, 

and d) discharge. 

 

After discharge, the products deposit on the both sides of the GNSs (Figure 5.2c), and 

it is important to note that at the edges of the GNSs, a relatively darker/thicker colour 

is observed (marked by arrows), suggesting more products on the edge sites as 

indicated by the square in Figure 5.2d. 

Figure 5.3 shows the FTIR spectra of the GNSs, BP-2000 and Vulcan XC-72. It can 

be seen that in comparison to the other two carbon materials, GNSs show an extra 

band at 1120 cm-1, which corresponds to the C-O stretching vibrations [26]. This is 

because the edge sites of the GNSs contain a large amount of unsaturated carbon atoms 

which are highly active to react with oxygen and form oxygen-containing groups. 

Therefore, the presence of the unsaturated carbon atoms results in high activity for 

ORR [27, 28]. 
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Figure 5.3 FTIR spectra of GNSs, BP-2000 and Vulcan XC-72. 

 

Several works have reported that the surface area, pore size and mesopore volume of 

carbon materials significantly affected the specific capacity of lithium-air  

batteries [6, 7]. These effects are also investigated in this work. 

Figure 5.4a shows the N2 absorption-desorption isotherms at 77 K for GNSs, BP-2000 

and Vulcan XC-72. All samples are found to yield type-I isotherm at low P/P0, 

indicating the presence of micropores [29]. For GNSs, the hysteresis loop, in the P/P0 

range of ~ 0.4-1.0 is indicative of mesoporosity in addition to the presence of 

microporosity [30]. The hysteresis loop for mesopores shifts to a higher P/P0 range  

(~ 0.8-1.0) for BP-2000 and Vulcan XC-72, which is associated with the presence of a 

narrower range of mesopores, with larger diameters. 
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Figure 5.4 (a) N2 adsorption-desorption isotherms at 77 K and (b) pore size 

distribution (PSD) for GNSs, BP-2000 and Vulcan XC-72. 
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The pore size distribution (PSD) obtained using the Barrett-Joyner-Halenda (BJH) 

method for the three carbon materials are shown in Figure 5.4b. In the mesopore size 

range (2-50 nm), the GNSs show a wide distribution of pore sizes and much higher 

pore volume at the pore size range from 2-20 nm, while at large pore size range  

(20-50 nm), BP-2000 possesses large pore volume. Vulcan XC-72 possesses small 

pore volume, compared to GNS and BP-2000.  

GNSs have similar mesopore volume but smaller surface area compared to BP-2000 

(Table SI-5.1), while the discharge capacity is much higher. Therefore, the pore size 

of GNSs plays a more important role in its superior performance, in addition to its 

novel structure. GNSs possess wide PSD in the mesopore range, forming suitable 

diffusion channels for the electrolyte and O2, which is an ideal 3-dimentional (3D),  

3-phase electrochemical area [31]. 

 

Figure 5.5 XRD pattern of GNSs electrode after discharge. 
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Figure 5.5 shows the XRD pattern of the GNSs electrode after discharge. The 

dominant discharge product is Li2CO3 and a small amount of Li2O2 is also present. 

Xiao and Zhang et al. and Bruce et al. have reported that for carbon-based electrode, 

the formation of Li2CO3, along with a small amount of Li2O2 was because the 

intermediate product of the reaction between Li and O2 may in turn react with the 

carbonate solvent in the PC/EC-based electrolyte [32, 33]. 

 

5.4 Conclusions 
 

In summary, graphene nanosheets were employed as the cathode materials for lithium-

oxygen batteries, and for the first time, were demonstrated to show an excellent 

electrochemical performance with a discharge capacity of 8705.9 mAh g-1. The unique 

structures of GNSs form an ideal 3D 3-phase electrochemical area and the diffusion 

channels for the electrolyte and O2, which increase the efficiency of the catalyst 

reaction. In addition, the active sites at the edge sites significantly contribute to the 

superior electrocatalytic activity towards ORR. Although the detailed mechanism for 

the oxygen reduction reaction on GNSs in nonaqueous electrolyte is unclear, it has 

revealed that GNSs can deliver an extremely high discharge capacity, showing 

promising applications in lithium-oxygen batteries. 
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Supporting Information 

 

Table SI-5.1 Physical properties of GNSs, BP-2000, and Vulcan XC-72. 

 GNSs BP-2000 Vulcan XC-72

Surface area / m2 g-1 524.99 1401.00 232.79 

Mesopore volume / cm3 g-1 1.1729 1.1139 0.2739 
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Chapter 6  

6 Nitrogen-Doped Graphene Nanosheets as Cathode 
Materials with Excellent Electrocatalytic Activity for 

High Capacity Lithium-Oxygen Batteries* 
 

Graphene nanosheets (GNSs) have shown much higher discharge capacity compared 

to carbon black powders due to their unique physical and chemical properties. The 

cathode of lithium-oxygen battery made of these GNSs has three-dimensional three-

phase electrochemical area and diffusion channels for the electrolyte and oxygen, 

which increase the efficiency of the cathode reactions. More importantly, the active 

sites of the GNSs also contribute to the superior electrocatalytic activity for oxygen 

reduction reaction during discharge. It is reported that the properties of GNSs can be 

tailored by heteroatom doping other elements to the graphene frameworks. Therefore, 

it is interesting to study the doping effect of GNSs for lithium-oxygen battery 

performance.  

In this chapter, nitrogen-doped graphenenanosheets (N-GNSs) were synthesized and 

employed as cathode materials for nonaqueous lithium-oxygen batteries and the 

battery delivered a discharge capacity of 11660 mAh g-1, which was about 40% higher 

than that of the pristine GNSs electrode. Furthermore, the electrocatalytic activity of 

N-GNSs for oxygen reduction in the nonaqueous electrolyte was 2.5 times as that of 

GNSs. The excellent electrochemical performance of N-GNSs was attributed to the 

defects and functional groups as active sites introduced by nitrogen doping. 

  

                                                 
*Aversion of this chapter has been published in Electrochemistry Communications, 2012, 18, 12-15. 
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6.1 Introduction 
 

Nonaqueous lithium-oxygen/air batteries have great potential for electric vehicles 

(EVs) and hybrid electric vehicles (HEVs) [1, 2]. The cathode active material, oxygen, 

is not stored in the battery but can be absorbed from the environment, leading to an 

extremely high energy density. However, the reaction products are not soluble in the 

nonaqueous electrolyte but deposit in the carbon electrode and eventually block the 

oxygen diffusion channels; therefore, it is a critical challenge to develop an optimum 

carbon cathode with appropriate surface area, porosity and morphology [3-5]. 

Graphene nanosheets (GNSs) have been reported as ideal cathode materials for 

lithium-oxygen batteries because of their unique morphology and structure. The GNSs 

electrode can provide not only ideal diffusion channels for electrolyte and oxygen, but 

also active sites for oxygen reduction reaction (ORR), therefore, improve the battery 

performance [6-8]. Chemical doping with nitrogen atoms to GNSs can modify the 

electronic property, provide more active sites, and enhance the interaction between 

carbon structure and other molecules, thus improves the performance in various 

applications, such as fuel cells, lithium-ion batteries, supercapacitors, etc [9-11]. 

In this study, nitrogen-doped graphene nanosheets (N-GNSs) were applied as cathode 

materials for lithium-oxygen batteries. They show excellent electrocatalytic activity for 

oxygen reduction, therefore, increasing about 40% of the discharge capacity compared 

to graphene nanosheets (GNSs). This finding not only shows that N-GNSs are 

promising electrode materials, but also gives a rational direction to modify other 

carbon materials for application in lithium-oxygen batteries. 
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6.2 Experimental 
 

6.2.1 Materials synthesis 

GNSs were prepared by the oxidation of graphite powder using the modified Hummers’ 

method, and N-GNSs were prepared by post heating the GNSs under high purity 

ammonia mixed with Ar at 900 oC for 5 mins [10, 11]. 

 

6.2.2 Physical characterizations 

The morphology of the discharge products of GNSs and N-GNSs electrodes were 

characterized by a Hitachi S-4800 field emission scanning electron microscopy 

(FESEM). The morphology of GNSs and N-GNSs were characterized by a Hitachi H-

7000 transmission electron microscopy (TEM). The XRD patterns were recorded by a 

Bruker-AXS D8 Discover diffractometer employing a Co-Kα source (λ=1.7892 Å). 

The XPS spectra were tested by a Kratos Axis Ultra X-ray photoelectron spectrometer 

with Al Kα as the X-ray source. Raman scattering spectra were recorded on a 

HORIBA Scientific LabRAM HR Raman spectrometer system equipped with a 532.4 

nm laser. N2 adsorption/desorption isotherms were obtained using a Folio 

Micromeritics TriStar II Surface Area and Pore Size Analyser. 

 

6.2.3 Electrochemical measurements 

Swagelok type cells were used to test the battery performance. GNSs or N-GNSs and 

PVDF (Alfa Aesar) with a weight ratio of 9:1 were casted onto a separator (Celgard 

3500) as cathode. The electrodes were cut to 3/8 inch in diameter and the loadings of 

GNSs or N-GNSs were ~ 0.3 mg. The electrolyte was 1 mol dm-3 LiPF6 dissolved in 

tetraethylene glycol dimethyl ether (TEGDME). The discharge/charge characteristics 
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were performed by using an Arbin BT-2000 battery station in a voltage range of  

2.0-4.5 V in a 1 atm oxygen atmosphere at room temperature (25 °C). 

The cyclic voltammetry (CV) tests were conducted in a three-electrode cell. A 

platinum wire was used as the counter electrode. A silver wire immersed into  

0.1 mol dm-3 AgNO3 in TEGDME solution, connected to the main solution by a glass 

frit, was used as reference electrode. A glass carbon disk (0.196 cm2, Pine Inc.) 

covered with catalyst thin film was used as the working electrode. 2 mg of GNSs or  

N-GNSs, 2 mg of PTFE (60 wt.%, Sigma-Aldrich) were suspended in a 30 vol.%  

2-propanol (Sigma-Aldrich) solution in deionized water and ultrasonically blended for 

30 min. 10 μL of the suspension was dropped on the disk electrode and dried at 80 °C 

in vacuum for 1 h. CV curves were recorded by scanning the disk potential from 3.5 to 

2.0 V (0.1 mol dm-3 LiPF6 in TEGDME solution) at a scan rate of 5 mV s-1 by using an 

AutolabPotentiostat/Galvanostat (PGSTAT-30, Eco Chemie, Brinkmann Instruments) 

at room temperature (25 °C). 

 

6.3 Results and Discussion 
 

Figure 6.1a shows the initial discharge curves of GNSs and N-GNSs electrodes in 

nonaqueous lithium-oxygen batteries at various current densities. The discharge 

capacity of GNSs electrode is 8530 mAh g-1 at a current density of 75 mA g-1, while 

11660mAh g-1 for N-GNSs, which is about 40% higher than that of GNSs. With the 

current densities increase, the discharge capacities of both samples decrease, which are 

5333 and 3090mhA g-1 for GNSs and 6640 and 3960mAh g-1 for N-GNSs at current 

densities of 150 and 300 mA g-1, respectively. Clearly, the N-GNSs electrode exhibits 

higher discharge capacity than GNSs electrode. Furthermore, N-GNSs electrode also 

shows higher average discharge plateau than GNSs electrode at various discharge 
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current densities, indicating a higher catalytic activity of N-GNSs for cathode reaction 

which may due to the higher binding energy of oxygen after nitrogen doping [12, 13]. 

 

Figure 6.1 a, Voltage profiles of GNSs and N-GNSs electrodes at various current 

densities; b, CVs of GNSs and N-GNSs electrodes in O2-saturated 0.1 mol dm-3 LiPF6 

in TEGDME solution at a scan rate of 5 mV s-1, inset is the CVs in Ar-saturated 

solution; c, Rotating-disk voltamograms recorded for GNSs and N-GNSs electrodes 

for ORR at a rotating speed of 100 rpm in O2-saturated 0.1 mol dm-3 LiPF6 in 

TEGDME solution at a scan rate of 5 mV s-1; d, Tafel-slops for the ORR on the GNSs 

and N-GNSs electrodes. 

 

The cyclic voltammogram (CV) curves of GNSs and N-GNSs in 0.1 mol dm-3 LiPF6 in 

TEGDME solution saturated with Ar or O2 at a scan rate of 5 mV s-1 are shown in 

Figure 6.1b. Featureless voltammetric currents were observed in the Ar-saturated 

solution (inset of Figure 6.1b). As shown in Figure 6.1b, the onset potential of ORR 
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for GNSs is at 2.76 V and no reduction peak is observed. While for N-GNSs, the onset 

potential of ORR shifted positively to around 2.8 V and a great and well-defined 

enhanced reduction peak at 2.29 V presents, indicating a superior electrocatalytic 

activity of N-GNSs for ORR. 

To further investigate the ORR performance, rotating disk electrode (RDE) 

voltammetry measurements were carried out (Figure 6.1c). The onset potential of 

ORR for GNSs is at 2.79 V, whereas for N-GNSs is at 2.84 V. It should be noted that 

there is no well-defined diffusion limiting current plateau for both samples which is 

similar to other non-noble catalysts especially pure carbon for ORR, however, the 

current density of N-GNSs at 2 V is about 2.5 times as that of GNSs [14-16]. 

Furthermore, according to the Tafel-slops of the two samples shown in Figure 6.1d, 

the numbers of electron transferred in ORR are 0.99 for N-GNSs and 0.80 for GNSs, 

respectively [17]. These results suggest that N-GNSs have higher catalytic activity for 

ORR in a nonaqueous solution than GNSs. 

As shown in Figure 6.2a and 6.2b, the structure and morphology of N-GNSs and 

GNSs show no obvious difference by observing the TEM images. N-GNSs and GNSs 

show the same micro/meso- porosity and pore size distribution (Figure 6.2c and inset). 

Figure 6.2d shows XPS survey spectra for GNSs and N-GNSs, as expected, nitrogen 

was introduced into GNSs and the content is about 2.8 at %. Based on the high 

resolution N1s spectra, three N peaks were observed at BE = 389.1 eV (pyridinic-N), 

399.9 eV (pyrrolic-N) and 401.5 eV (graphitic-N) for N-GNSs (inset of Figure 6.2d). 

Recent studies reported that nitrogen-doped carbon powder and carbon nanotubes 

showed higher discharge capacities for lithium-air batteries than the pristine 

counterparts [18,19]. 
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Figure 6.2 TEM images of a, GNSs and b, N-GNSs; c, N2 adsorption–desorption 

isotherms at 77 K, inset is the pore size distribution; XPS d, survey, e, C1s, and f, O1s 

spectra of GNSs and N-GNSs, inset of d is N 1s spectra of two samples; g, Raman 

spectra of GNSs and N-GNSs. 
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The process for incorporation of nitrogen into graphene also creates structural defects 

on GNSs, which increases the amount of unsaturated carbon atoms (Figure 6.2e); and 

these atoms are very active to react with oxygen and form oxygen-containing groups, 

which can catalyze the ORR [20]. From Figure 6.2f, it can be seen that oxygen content 

increase after nitrogen doping, and present in the form of C-O bonds, carbonyls (C=O), 

and carboxylates (O=C-O) [21]. The Raman spectra of GNSs and N-GNSs are shown 

in Figure 6.2g. Two peaks observed at ~ 1350 and ~ 1595 cm-1 are corresponding to D 

and G bands, respectively. The intensity ratio of D to G bands of GNSs and N-GNSs 

are 0.96 and 1.10, respectively, confirming that there are more defects after nitrogen 

doping [22]. It is believed that there are more defects and functional groups after 

nitrogen doping, and the carbon atoms adjacent to nitrogen dopants possess higher 

positive charge density, resulting in an enhanced adsorption of oxygen and reactive 

intermediates that enhances the ORR [23]. 

The morphologies of discharge products for GNSs and N-GNSs electrodes are shown 

in Figure 6.3a and 6.3b, respectively. It can be seen that the morphologies of the 

products on the two surfaces are significantly different. The diameter of the particles is 

about 600~1000 nm for GNSs and 200~500 nm for N-GNSs. Recent study by Density 

Functional Theory (DFT) calculations have shown that the discharge products most 

likely prefer to nucleate and grow around the defective sites with functional groups on 

GNSs [8]. To confirm it by experiment, the electrodes were discharged for 1 h and the 

SEM images of the products are shown in Figure 6.3c and 6.3d. On GNSs, the product 

particle size is distributed from 20 to 45 nm, whereas on N-GNSs, a smaller size from 

5 to 20 nm is observed. Moreover, the distribution of the product is more uniform on 

N-GNSs, while the product particles aggregated into large clusters on GNSs and some 

surfaces are free of coverage. These observations suggest that the presence of the 

homogeneously distributed nitrogen species resulting in more active sites (defects and 

functional groups) of N-GNSs provide more nucleation sites and thus promotes a 

higher dispersion.  
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Figure 6.3 SEM images of the fully discharged a, GNSs, b, N-GNSs electrodes and c, 

GNSs, d, N-GNSs electrodes discharged for 1 h; e, XRD patterns of pristine and 

discharged GNSs and N-GNSs electrodes. 
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Recently, there are some discussions about the decomposition of the carbonatesolvent 

based electrolytes during discharge and charge in the lithium-oxygen batteries [24, 25]. 

To minimize this contribution, ether-based electrolyte has been used in this study. The 

GNSs and N-GNSs electrodes before and after discharged were examined by XRD and 

the patterns are shown in Figure 6.3e. The additional peaks of both electrodes after 

discharge were assigned to Li2O2, whereas neither Li2O nor Li2CO3 was detected, and 

the results are consistent with the formation of Li2O2 by other groups [26]. It is 

important to note that the peaks of the products of N-GNSs electrodes were broader 

than those of GNSs electrodes, which may due to the smaller crystallite sizes of Li2O2, 

consistent with the SEM results discussed above. 

 

6.4 Conclusions 
 

It was demonstrated that the performance improvement of N-GNSs as cathode 

materials for lithium-oxygen batteries was due to the defects and functional groups 

introduced by doping nitrogen into the framework of GNSs. More importantly, for the 

first time, we showed that the catalytic activity for ORR of N-GNSs in a nonaqueous 

electrolyte is much higher than that of GNSs. This finding gives a rational direction to 

modify other carbon materials for application in lithium-oxygen batteries. 
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Chapter 7  

7 Discharge Product Morphology and Increased Charge 
Performance of Lithium-Oxygen Batteries with 
Graphene Nanosheet Electrodes: The Effect of 

Sulphur Doping* 
 

Nitrogen-doped graphene nanosheets show not only better catalytic activity for the 

cathode reaction, but also increased discharge capacity of lithium-oxygen batteries, 

which is due to more active sites, resulting from defects and functional groups 

introduced into the graphene framework. Therefore, heteroatom doping is an effective 

way to improve the battery performance. Recently, sulphur has been successfully 

doped into graphene and the as-prepared sample even showed better catalytic activity 

for oxygen reduction reaction than commercial Pt catalyst. 

In this chapter, Sulphur-doped graphene nanosheets (S-GNSs) were fabricated and the 

influence of the material on the discharge performance as well as product formation of 

lithium-oxygen batteries was demonstrated. The growth and distribution of the 

discharge products were studied and a mechanism was proposed. This will have 

significant implication for cathode catalysts and rechargeable battery performance. 

 

 

  

                                                 
*A version of this chapter has been published in Journal of Materials Chemistry, 2012, 22, 7537-7543. 
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7.1 Introduction 
 

Nonaqueous lithium-oxygen batteries have received much attention as a promising 

energy storage system beyond lithium-ion batteries (LIBs) for electric vehicles (EVs) 

due to their extremely high specific energy densities which could be 5-10 times higher 

than those of LIBs [1, 2]. However, one critical challenge for practical application of 

lithium-oxygen batteries is to develop optimal porous cathode since the insoluble 

product, lithium peroxide (Li2O2), deposits in and eventually will clog the electrode 

pores which limit the discharge capacity [3-6]. Another challenge is the poor rate 

capability and significant polarization of cell voltage which is also due to the 

formation of Li2O2. Recent studies reported that the structure, composition, and 

electronic properties of the discharge products, Li2O2, of lithium-oxygen batteries 

could dramatically affect the battery performance. For example, Nanda et al. found 

that the distribution of lithium products in lithium-oxygen cathodes significantly 

affected the rechargeability of the batteries [7]. Luntz et al. suggested that sudden 

death occurred was arisen from limited charge transport through the growth of Li2O2 

film [8]. Seriani et al. proposed that the particle size of lithium oxides had an impact 

on the porous electrodes [9]. Siegel et al. found that the surface electronic structure of 

small Li2O2 particles was dramatically different from the bulk insulator due to the 

lithium vacancies [10]. Ceder et al. further demonstrated that the electronic conduction 

was likely to be controlled by vacancy diffusion in Li2O2 [11]. 

Toward the goal of tailoring Li2O2 properties to battery performance, it is very 

important to select or design optimal growth of Li2O2 via substrate control. In our 

previous report, we had found that nitrogen-doped graphene showed significant 

influence not only on battery performance but also on the nucleation and growth of 

discharge products, which is that smaller and more uniform particles were  

obtained [12]. Therefore, it is interesting to investigate the properties of other 

heteroatom doped graphene. Recently, Huang et al. reported sulphur-doped graphene 

as an electrocatalyst for oxygen reduction reaction (ORR) and found that the sample 
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exhibited excellent catalytic activity, long-term stability, and high methanol  

tolerance [13]. However, to our best knowledge, sulphur-doped graphene has rarely 

been employed in the nonaqueous lithium-oxygen battery system. Herein, we 

successfully fabricated sulphur-doped graphene and demonstrate its influence on Li2O2 

formation. The experimental results not only give a further insight into the reaction 

mechanism but also provide a rational direction to modify cathode material properties 

for lithium-oxygen batteries. This will also have significant implication for catalysts 

performance at cathode.  

 

7.2 Experimental 
 

7.2.1 Materials synthesis 

Graphene nanosheets (GNSs) were prepared by the oxidation of graphite powder using 

the modified Hummers’ method, and sulphur-doped graphene nanosheets (S-GNSs) 

was subsequently obtained using the following procedure: 0.05 g of graphene was 

dispersed into acetone with 0.8 g of p-toluenesulfonic acid (Alfa Aesar). Then the 

slurry was stirred at room temperature until the solvent was totally evaporated. And 

the resulting product was dried at 100 oC over night and finally was calcined at 900 oC 

in Ar for 1 hour [14-17]. 

 

7.2.2 Physical characterizations 

The morphology of GNSs, S-GNSs and the discharge products were characterized by a 

Hitachi S-4800 FESEM. XRD patterns were recorded by a Bruker-AXS D8 Discover 

diffractometer (Co-Kα source). XPS spectra were tested by a Kratos Axis Ultra X-ray 

photoelectron spectrometer (Al Kα source). Raman scattering (RS) spectra were 

recorded on a HORIBA Scientific LabRAM HR Raman spectrometer system equipped 



124 

 

with a 532.4 nm laser. The S K-edge X-ray Absorption Near Edge Structure (XANES) 

spectra were obtained on the Soft X-ray Microcharacterization Beamline (SXRMB, 

ΔE/E: 10−4) while the Li K-edge spectra were obtained on the Variable Line-Spacing 

Planar Grating Monochromator beamline (VLS-PGM, ΔE/E: 10−5) at the Canadian 

Light Source (CLS). Reference samples, sulphur, Li2O2 and Li2CO3 were purchased 

from Sigma-Aldrich without further purification. Spectra were recorded in 

fluorescence yield mode (FLY).  

 

7.2.3 Electrochemical measurements 

Swagelok type cells were used to test the battery performance. GNSs or S-GNSs and 

Polyvinylidene fluoride (PVDF) (Alfa Aesar, 98.5%) with a weight ratio of 9:1 were 

casted onto a separator (Celgard 3500) and cut to 3/8 inch in diameter as cathode and 

the material loadings were ~ 0.3 mg. 1 mol dm-3 LiPF6/Tetraethylene glycol dimethyl 

ether (TEGDME) was used as electrolyte. The discharge/charge characteristics were 

measured using an Arbin BT-2000 battery station in the voltage range of 2.0-4.5 V in a 

1 atm oxygen atmosphere at 25 °C. 
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7.3 Results and Discussion 
 

 

Figure 7.1 (a) SEM image, (b) EDS mapping, (c) XPS spectroscopy, and (d) S K-edge 

XANES of sulphur-doped graphene. 

 

Figure 7.1a shows the SEM image of S-GNSs. It can be seen that it features a curly 

morphology with a thin, wrinkled structure which is similar to pristine graphene 

(Supporting Information, Figure SI-7.1). The elemental composition was analyzed by 

EDX mapping (Figure 7.1b). The presence of sulphur is confirmed and the sulphur 

distribution in the graphene is relatively uniform, suggesting that sulphur atoms are not 

only in plane but also at the edge of GNSs. XPS further confirms that sulphur is 
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successfully doped into to graphene, and the sulphur percentage is about 1.9 at % 

(Figure 7.1c). The high-resolution S 2p peak is shown in the inset of Figure 7.1c. As 

can be seen, covalent C-S bonds were doped in two forms. One is –C–S–C– (163.8 

eV), and the other is –C–SOx– (x=2–4, 165.0–166.5 eV), such as sulfate or  

sulfonate [13, 18, 19]. The synchrotron-based XANES spectroscopy is a molecular-

scale technique that yields local electronic and structural information on the element of 

interest [20, 21]. The sulphur doping is supported by S K-edge XANES as shown in 

Fig. 1d, the intense peak at 2473.2 eV can be assigned to a transition of S 1s to a S-C 

final state of p character while the broad peak between 2480 - 2482 eV could be a 

mixture of sulphur of valences 4+ (sulfone), 5+ (sulfonate) [24]. Based on the XPS and 

XANES results, we can conclude that sulphur was doped into the framework of 

graphene, although the exact position of substitutional sulphur requires further study. 

The Raman spectra of sulphur-doped and pristine graphene are shown in Supporting 

Information, Figure SI-7.2. Both samples display two peaks at ~ 1353 and 1598 cm-1, 

which correspond to the D band and G band, respectively. It is well accepted that 

higher disorder (more defects) leads to a higher intensity ratio between D band and G 

band [25-28]. For S-GNSs, the ID/IG ratio increases to about 1.06 from a value of 

around 0.96 for pristine graphene. In addition, the spectra also exhibit a broadening of 

the D band for the S-GNSs, implying an enhanced defect density. In our previous 

effort on heteroatom-doped graphene for lithium-oxygen batteries, we found that the 

discharge capacity dramatically increased resulting from the introduction of defective 

sites (defects or functional groups) after nitrogen doping [12]. However, as can be seen 

from Figure 7.2a and 7.2b, the initial discharge capacity of S-GNSs electrode is about 

4300 mAh g-1, which is lower than that of the pristine graphene electrode  

(~ 8700 mhA g-1). However, it is noted that the initial charge capacity of the S-GNSs 

electrode is about 4100 mAh g-1, while it is only about 170 mAh g-1 for the pristine 

graphene electrode. Moreover, the discharge capacities in the second cycle of the 

sulphur-doped and pristine graphene electrodes are 3500 and 220 mAh g-1, 

respectively. 
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Figure 7.2 Discharge/charge curves of (a) sulphur-doped and (b) pristine graphene 

electrodes at a current density of 75 mA g-1. Inset of (b) is enlarged figure of the 

charge curve for 1st cycle. 
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It is reported by Shao-Horn’s group that the catalytic activity of the catalysts towards 

oxygen reduction reaction resulting in affecting the discharge performance for lithium-

oxygen batteries, was related to oxygen adsorption energy [29]. But the first-principle 

calculations showed that the oxygen adsorption energy was not increased by doping 

sulphur to graphene [30]. Therefore, the discharge capacity of S-GNSs for lithium-

oxygen batteries could not be improved based on the merely increased adsorption 

ability for oxygen; the reason that it shows lower discharge capacity but higher charge 

capacity will be further discussed below.  

 

Figure 7.3 SEM images of (a) sulphur-doped and (b) pristine graphene discharged 

electrodes. (c) XRD patterns, (d) XANES of discharge products of S-GNSs. 
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Figure 7.3a and 7.3b show the SEM morphologies of the discharge products for 

sulphur-doped and pristine graphene electrodes, respectively. It can be seen that the 

discharge products were deposited on the entire porous electrodes for both samples, 

but the morphology are significantly different. Irregular-shape particles formed on the 

pristine graphene electrode while interestingly, nanorods with a diameter about 100 

nm grew on the S-GNSs electrode. The discharge products of two electrodes were 

examined by XRD and the patterns are shown in Figure 7.3c. It is interesting to find 

that the XRD peaks can be assigned to Li2O2, although the morphology of the 

discharge product on S-GNSs is different. In our previous report, we found that the 

discharge product on pristine and nitrogen-doped graphene were Li2O2, which are 

consistent with the results obtained by other groups [12]. The discharge product on  

S-GNSs is better crystallized than that on pristine graphene, suggesting that the 

dismustase reaction and nucleation of Li2O2 are promoted due to the strong interaction 

between carbon and the intermediate products after sulphur doping [31].  

The Li K-edge XANES of discharge product for GNSs, S-GNSs electrodes and 

reference materials, such as standard Li2CO3 and Li2O2, are shown in Figure 7.3d. As 

can be seen, two major peaks at ~ 60.8 and ~ 62.2 eV were presented for both GNSs 

and S-GNSs samples; it matches well with standard Li2O2 material, while an addition 

peak at ~ 63.7 eV was observed for the reference. However, it is much different from 

that of Li2CO3 (only one peak at ~ 61.8 eV). It is reported that the Li+ local 

environment in the Li2O2 of discharged pure carbon powder and Au/C electrodes is 

different from the standard bulk materials which is due to the presence of structural 

defects such as oxygen and/or lithium vacancies [31]. The broadening of the doublet is 

consistent with this notion (increasing disorder compared with the reference). The 

SEM image of the discharge products after 2nd discharge is shown in Supporting 

Information, Figure SI-7.3a. As can be seen, nanorod-shaped structure still appears, 

however, the diameter of the nanorods is smaller compared to the products form after 

1st discharge. It can be seen from the XRD pattern that in addition to Li2O2, Li2CO3 

also presents, indicating the side reactions of electrolyte during discharge/charge cycle 

(Supporting Information, Figure SI-7.3b) [32-34]. The decreased charge capacity in 
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the 2nd cycle is due to the Li2CO3 formation which increases the polarization in the 

electrode (higher charging voltage is needed to decompose Li2CO3) [35]. 

 

Figure 7.4 SEM images of discharged S-GNSs electrodes to (a) 2.6 V, (b) 2.4 V and 

(c) 2.2 V at a current density of 75 mA g-1; (d) Mean diameters of the discharge 

products. 

 

Several works have demonstrated that sulphur can be the catalyst for nanostrutural 

formation or determine the morphology, such as cementite [36], ZnO [37], SnO2 [38], 

however, there is no literature on lithium oxides nanostructural formation. It is 

reported that S-doped graphene can become semiconductor compared to pristine one, 

resulting in an increased electrode polarization in the battery [18, 39]. This will 

diminish the binding of the generated O2- to the substrate during discharge, therefore, 

enhance the diffusion of the superoxide molecules away from the electrode surface, 

and favour the disproportional peroxide formation, leading to a nanorod-shape 
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structure growth [32, 33]. However, the exact role of sulphur for the nanorod growth 

will need further study. The discharge current density is the same for the sulphur-

doped and pristine graphene; the particle-shape discharge product would have a higher 

packing density on the deposition surface compared to nanowires/nanorods [40]. 

Therefore, the amount of the discharge product on the S-GNSs is less than that on 

pristine one, indicating a lower discharge capacity as well. However, the dense layer of 

Li2O2 on pristine graphene significantly affects the charge transport through the Li2O2-

electrolyte interface, thus the charge performance. In contrast, for S-GNSs, the 

randomly distributed Li2O2nanorods will provide sufficient tunnelling holes that 

support the electrochemical reaction during charge process, leading an increased 

charge performance [8]. 

 

Figure 7.5 SEM images of discharge products at current density of (a) 150 mA g-1, (b) 

300 mA g-1. Inset of (a) and (b) are the high-magnification images. 

 

The growth of the Li2O2 nanorods were observed by controlling the discharge depth of 

the batteries while keeping the discharge current density at 75 mA g-1. Figure 7.4a, 

7.4b and 7.4c show the SEM images of the discharged electrodes. It can be seen that at 

2.6 V, nanorods were already grown on most of the surface of the electrode and the 

diameter is around 35 nm. As the discharge voltage were decreased, the electrode 

surface were all cover with the nanorods and the diameters increased to ~ 45,~ 75 and 

~ 100 nm at 2.4, 2.2 and 2 V, respectively (Figure 7.4d). However, the morphology of 
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the discharge product changes when higher current densities were applied. As shown 

in Figure 7.5a, in addition to the nanorods on the electrode surface, nanosheets with a 

thickness of ~ 10 nm were formed on the nanorods at 150 mA g-1. Donut-shape 

particles on the order of ~ 1 um were found instead of nanorods or nanosheets at  

300 mA g-1 (Figure 7.5b). These toroidal particles were composed of aggregated 

nanosheet-structures; these toroids were also found by other groups but the formation 

and structural evolution have not been observed before [33,34]. 

 

Figure 7.6 Schematic of discharge product nanostructures growth on S-GNSs 

electrodes. 
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From our study by employing S-GNSs electrode, the growth mechanism of the 

discharge product can be proposed based on the experimental results. Figure 7.6 

shows the schematic of the growth mechanism. Initially, O2 is reduced to O2- and 

combined with Li+ to form LiO2 (Figure 7.6A). Then elongated nanocrystallites of 

Li2O2 form on the carbon surface (Figure 7.6B). Depending on the discharge current 

density, different morphologies are obtained. At a current density of 75 mA g-1, only 

Li2O2 nanorods were formed (Figure 7.6C). As the current density increases to  

150 mA g-1, the cathodic polarization increases which enhances the diffusion of the 

superoxide molecules away from the electrode surface, and peroxide forms along 

certain facet of Li2O2 crystal, thus nanosheets were observed on nanorods  

(Figure 7.6D). If a current density of 300 mA g-1 was applied, the cathodic 

polarization increases even more, instead of formation of nanrods, only nanosheets 

will form and give rise to the toroid aggregates for Li2O2 (Figure 7.6E). Nazar et al. 

suggested that Li2O2 favoured growth on the sites that the superoxide is generated in 

order to shorten the O2- diffusion path which may support our hypothesis [33, 34]. 

However, in the real system, the growth is surely more complicated and further studies 

are needed to verify the hypothesis. 

 

7.4 Conclusions 
 

In summary, we have employed S-GNSs as cathode materials for lithium-oxygen 

batteries and found that the morphology of the discharge product, Li2O2, were 

significantly different from the pristine graphene, and therefore the discharge and 

charge properties of the batteries. The formation of Li2O2 nanorods during discharge 

and thus the charge properties are considered to be due to sulphur-doping, however, 

the role that sulphur played is not clearly at current stage and further study is needed.  
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It is also demonstrated, for the first time, the detailed morphological evolution of Li2O2 

as a function of the discharge depth and current density. This study gives a rational 

direction for selecting and designing cathode materials (including catalysts) to tailor 

the morphology of Li2O2, thus improving the performance of lithium-oxygen batteries. 
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Supporting Information 

 

 

Figure SI-7.1 SEM image of graphene nanosheets. 
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Figure SI-7.2 Raman spectroscopy of S-GNSs and GNSs. 
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Figure SI-7.3 SEM image (a) and XRD pattern (b) of the discharge product after 2nd 

discharge. 
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Chapter 8  

8 Facile Controlled Synthesis and Growth Mechanisms 
of Flower-Like and Tubular MnO2 Nanostructres by 

Microwave-Assisted Hydrothermal Method* 
 

The cycle performance is another critical issue for the practice application of lithium-

oxygen batteries. Metal oxides, such as MnO2, Co3O4, Fe2O3, etc have been proved to 

be good catalysts for charge process, improving the battery cycle performance. 

However, the conventional methods to synthesize metal oxides often need high 

temperatures, complex procedures, etc. Therefore, it is necessary to develop a facile 

way for material synthesis, especially for mass production. 

In this chapter, birnessite flower-like and α-type tubular MnO2 nanostructures were 

selectively synthesized through simple decomposition of KMnO4 under hydrochloric 

acid condition by controlling reaction temperature using a microwave-assisted 

hydrothermal method. The as-prepared samples were characterized in detail by various 

techniques including XRD, FESEM, TEM, HRTEM, FTIR, and Raman spectroscopy. 

While the growth of flower-like birnessite-MnO2 might follow a widely accepted 

Ostwald ripening process, we proposed a formation mechanism of the nanotubular α-

MnO2 based on our evidence, which was assembly of nanorods through an “oriented 

attachment” process. 

 

  

                                                 
*A version of this chapter has been published in Journal of Colloid and Interface Science, 2012, 369, 

123-128. 
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8.1 Introduction 
 

Synthesis of nanostructured materials with controlled shape, architecture and size is of 

importance to ensure their property performance in various device applications, such 

as optics, magnetism, mechanics, and electronics [1]. Among various synthesis 

approaches, solution-based wet chemical methods feature the virtue of multiplex 

routes and high output, templates, surfactants and complexing species have been 

applied to control size and structure of the products [2-4]. However, these methods 

usually imply complex and costly procedures, which are not versatile or environmental 

friendly.  

Recently, microwave irradiation has been increasingly applied to replace conventional 

heating methods in material synthesis and sample digestion since it provides a 

selective, fast and homogenous heat which significantly reduces processing time and 

cost [5-7]. Combining the microwave irradiation with wet chemical methods such as 

hydrothermal or solvothermal techniques, required temperature and pressure for 

nanostructure growth can be rapidly achieved, which leads to enhanced kinetics of 

crystallization and promotes the formation of new phase of product [8]. In this case, 

nanomaterials with novel structures and architectures are expected to be generated. Up 

to now, different kinds of nanomaterials have been synthesized via a microwave-

assisted route, including NiO [9], ZnO [10], Fe3O4 [11], WO3 [12], Co3O4 [13], etc. 

Manganese dioxide (MnO2) nanostructures exhibit distinctive physical and chemical 

properties and have wide applications in molecular/ion sieves [14], catalysts [15], 

sensors [16], and energy storage [17]. It is known that the properties of nanostructured 

MnO2 highly depend on the crystal structure, dimension and morphology [18]. Various 

MnO2 nanostructures such as nanoparticles [19], nanorods/nanofibers [20], nanowires 

[21], and nanotubes [22] have been prepared by sol-gel [23], precipitation [24], reflux 

[25], thermal deposition [26], and hydrothermal [27] techniques. As a direct and one-

step wet chemical route, hydrothermal method has been prevalently employed in 
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synthesizing MnO2 nanostructures. For example, Wang et al. reported a selected-

control low-temperature hydrothermal method of synthesizing 1D MnO2 

nanostructures through the oxidation of Mn2+ by S2O8
2-, MnO4

- or ClO- [28-29]. Cheng 

et al. synthesized 2D hexagram-like and dendrite-like hierarchical MnO2 

nanostructures by decomposition of Mn(NO3)2 solution with or without nitric acid [17]. 

Yu et al. obtained 3D urchin shaped and clewlike MnO2 nanostructures in the presence 

of Al3+ or Fe3+
 under hydrothermal condition [30]. However, these conventional 

hydrothermal methods require prolonged reaction time for more than twelve hours, 

even for several days. Recently, microwave-assisted hydrothermal method (MA-HM) 

was employed to synthesize octahedral molecular sieves (OMS-2) nanomaterials, and 

the samples possess better catalytic activity for cinnamyl alcohol oxidation than their 

conventional counterparts [31]. But to the best of our knowledge, synthesis of MnO2 

nanotubes by MA-HM has not been reported previously. 

Herein, we demonstrate a facile rapid procedure to fabricate MnO2 nanostructures 

through decomposition of KMnO4 under hydrochloric acid condition by MA-HM. 3D 

hierarchical nanostructures and 1D nanotubes of MnO2 with different crystallographic 

forms were selectively obtained by controlling the reaction parameters. The growth 

mechanism was studied and discussed in detail based on detailed observations in 

different growth stages. This synthetic route requires no templates, catalysts, or 

organic reagents which promises large-scale production of nanostructured MnO2 with 

controlled structure and size.  
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8.2 Experimental 
 

8.2.1 Materials synthesis 

All the chemicals used in this experiment were of analytical grade from Sigma-Aldrich 

Company and used without further purification. In a typical synthesis, 1.5 mmol of 

KMnO4 was added to 20 ml deionized water to form a homogeneous solution. 0.5 ml 

of HCl (37 wt. %) was then added dropwise into the solution under magnetic stirring. 

After stirring for 20 min, the obtained solution was transferred to a 100 ml Teflon-

lined ceramic-walled vessel. The autoclave was sealed and heated to different reaction 

temperatures (100,140, and 180 ºC) with the same holding time of 25 min in an Anton 

Paar Synthos 3000 microwave synthesis system. After the autoclave was cooled down 

to room temperature, the sample was collected by centrifugation and washed with 

deionized water and absolute ethanol several times to remove the impurities, and dried 

in air at 80 ºC for 12 h. 

 

8.2.2 Physical characterizations 

The powder X-ray diffraction (XRD) patterns were recorded by a Inel multi purpose 

diffractometer system with Cu Kα radiation (λ = 1.54060 Å) operated at 30 kV and  

20 mA. The morphology of the synthesized samples was determined by a Hitachi S-

4800 field emission scanning electron microscope (FESEM) operated at 5 kV. 

Transmission electron microscopy (TEM) images were taken by a Philips CM 10 

microscope operated at 80 kV. High-resolution transmission electron microscopy 

(HRTEM) and selected area electron diffraction (SAED) were characterized by a 

JEOL 2010 FEG microscope operated at 200 kV. Fourier transform-infrared (FT-IR) 

measurements were carried out by the KBr method using a Nicolet 6700 FT-IR 

spectrometer. FT-IR spectra were recorded in the transmittance mode over the range of 

400–4000 cm−1 by averaging 16 scans at a resolution of 4 cm−1. Raman scattering (RS) 
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spectra were collected on a HORIBA Scientific LabRAM HR Raman spectrometer 

system equipped with a 532 nm laser. A laser energy filter value of 2 was applied, 

which prevents decomposition of the samples. The spectra were taken between 100 

and 1000 cm-1 in a backscattering configuration at room temperature. 

 

8.3 Results and Discussion 
 

8.3.1 Structure and morphology characterization  

The phase purity and crystal structure of MnO2 was examined by XRD. Different 

crystal structures can be achieved by controlling the reaction temperatures. As shown 

in Figure 8.1a, all the diffraction peaks of the XRD pattern for the sample prepared at 

100 °C can be indexed to the birnessite-type MnO2 (JCPDS No. 80-1098), which has a 

lamellar structure and the interlayer distance of MnO6 octahedra layers is 0.73 nm. The 

broaden peaks with low intensity observed in XRD pattern suggest that the sample is 

in poor crystalline state with a short-range crystal form. In particular, the relative 

intensities of the (001) planes are lower than those in the standard JCPDS data, which 

suggests that the layers of MnO6 octahedra are not perfectly oriented [32]. In contrast, 

the sample prepared at 140 °C (Figure 8.1b) can be attributed to the tetragonal phase 

α-MnO2 (JCPDS No. 44-0141) and the XRD pattern with sharp and intense peaks 

indicates a good crystallinity for the α-MnO2.  
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Figure 8.1 XRD patterns of the products prepared at (a) 100 °C, and (b) 140 °C in  

25 min. 

 

MnO2 with different crystal structures exhibited significantly different morphologies. 

Figure 8.2 shows the SEM images of birnessite-type and α-MnO2. As shown in  

Figure 8.2a, the birnessite-type MnO2 sample is composed of uniform flower-like 

microsphere nanostructures with a diameter of 200-400 nm. The high-magnification 

images reveal that the microsphere consists of crumpled nanosheets about 10 nm in 

thickness (Figure 8.2b). By comparison, the α-MnO2 shows typical fibrous shape 

nanostructures with a length of 2-6 μm (Figure 8.2c). The images at higher 

magnification (Figure 8.2d) reveal that they have tubular structures and the diameter 

is about 100 nm. 
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Figure 8.2 SEM images of the products prepared at (a, and b) 100 °C, and (c, and d) 

140 °C in 25 min. The insets of a, and c are the lower magnification images. 

 

The interior structure of the flower-like microsphere nanostrctures was further 

characterized by TEM and HRTEM. Figure 8.3a shows core-corona architecture of 

the birnessite-type MnO2 which is similar to the previous report [33]. From the TEM 

image, it can be seen clearly that the nanosheets in the corona are grown 

perpendicularly/parallel from the core. The selected area electron diffraction (SAED) 

pattern (inset in Figure 8.3a) of a typical microsphere indicates that it is 

polycrystalline.  
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Figure 8.3 TEM (a, and c) and HRTEM (b, and d) images of the products prepared at 

(a, and b) 100 °C, and (c, and d) 140 °C in 25 min. The insets of a, and c show the 

corresponding SAED patterns. 

 

The HRTEM image (Figure 8.3b) indicates that the corona is composed of thin sheets 

crystallized in the birnessite structure with a d-spacing about 0.6 nm. The distance is 

lower than the d spacing between the (001) planes (0.73 nm), which is due to the 

dehydrating under the electron beam. It is noticed that the distance between nanosheets 

are not even and there are some dislocations along the nanosheet direction (Red dash 

circle in Figure 8.3b), indicating the poor orientation of the (001) planes, which agrees 

with the XRD result. 
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Figure 8.3c and 8.3d show the TEM and HRTEM images of the α-MnO2 nanotube 

structures. As shown in Figure 8.3c, the α-MnO2 nanotubes have relatively uniform 

outer diameters ranging between 80 and 100 nm and the wall thickness is about 20 nm. 

The SAED pattern (inset in Figure 8.3c) reveals the single-crystalline nature of the  

α-MnO2 nanotubes. The lattice fringes in Figure 8.3d shows the interplanar distances 

perpendicularly to the rod axis is 0.29 nm, which agrees with the d value of (001) 

planes of α-MnO2. Therefore, the nanotubes grow along the [001] direction. The TEM 

and HRTEM results are consistent with XRD data, confirming the mono-phase and 

good crystallinity of the α-MnO2 nanotubes. 

Fourier transform-infrared (FT-IR) and Raman scattering (RS) spectroscopy have been 

proved to be useful alternatives and/or supplements to X-ray diffraction for structural 

characterizations of materials [34]. Because they are sensitive to crystalline disorders 

as well as different local structural properties, FT-IR and RS spectroscopy can yield 

more complete and reliable description of materials, and further confirm our samples. 

The FT-IR spectra of the samples are shown in Figure 8.4A. From the spectra results 

of as-prepared samples, it can be observed that a broadband appears at around  

3442 cm-1 for both samples, which is caused by the absorbent of interlayer hydrates 

and some hydroxyl groups not from hydrates but those directly bound to the interlayer 

metal ions. And the bands at 1635 and 1385 cm-1 represent the vibration due to 

interaction of Mn with surrounding species, such as OH, O, H+ and K+. The water 

molecules or cations intercalated into the MnO2 interlayer or tunnels were introduced 

during the synthesis to build/maintain the structures [35]. It has been reported that in 

hydrous MnO2 samples, the peaks appear at 1620 and 1280 cm-1 [36]. The high 

frequency shift in our case reveals the strongly bonded nature [37]. 
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Figure 8.4 FT-IR spectra (A) and Raman scattering spectra (B) of the products 

prepared at (a) 100 °C, and (b) 140 °C in 25 min. 
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The FT-IR spectra results in the region of 800 to 400 cm-1 reveal information about 

MnO6 octahedra (inset in Figure 8.4A). A major difference between the two kinds of 

samples has been witnessed in this region. For birnessite-type MnO2, a broadband is 

present at 514 cm-1 while four weak bands are recorded at 668, 456, 434 and 416 cm-1, 

respectively. The results are different from that of literatures, viz. the band at 635, 583, 

513, 477 and 423 cm-1, respectively [38]. Especially, the band at 423 cm-1 indicates the 

crystalline order of the birnessite compound [34]. The distortion of MnO6 octahedra is 

due to the constitutional water in the sample [37]. Obvious differences can be observed 

for α-MnO2. Two dominant bands at 524 and 466 cm-1 and five weak bands at 720, 

668, 636, 431 and 416 cm-1 are recorded, which are similar to those previously 

reported for α-MnO2 materials [39]. 

Figure 8.4B shows the Raman spectra of birnessite-type and α-MnO2. Three main 

contributions at 506, 565 and 648 cm-1 are detected for the birnessite-type MnO2. The 

Raman band at 648 cm-1 can be viewed as the symmetric ν2(Mn-O) stretching 

vibration of MnO6 groups and the band at 565 cm-1 is attributed to the ν3(Mn-O) 

stretching vibration in the basal plane of MnO6 sheets [40]. The ν3(Mn-O) stretching 

frequency presents a shift of 10 cm-1 towards the low-frequency side, which is 

attributed to the defect chemistry and the local disorder of the as-prepared birnessite 

structure [34]. The Raman spectrum of α-MnO2 nanotubes has several contributions at 

180, 380, 483, 570 and 635 cm-1. The low-frequency Raman band at 180 cm-1 is 

assigned to an external vibration that due to the translational motion of the MnO6 

octahedra while the Raman band at 380 cm-1 is caused by the Mn-O bending vibrations. 

It is emphasized that the relative intensities of two high-frequency Raman bands at  

570 and 635 cm-1 are correlated to the nature of the tunnel species [39]. Hence, the 

spectrum reflects the good crystallinity of the α-MnO2, which is agreement with the 

structural studies reported above. 
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8.3.2 Growth mechanisms of MnO2 nanostructures 

The formation mechanism of the flower-like MnO2 microspheres has been widely 

accepted in the previous report for hydrothermal method [41]. We believe that the 

microwave-assisted hydrothermal method has a similar mechanism. In brief, firstly, 

large amount of nuclei form rapidly in a short time and then self-assembly to form 

amorphous spheres. During the hydrothermal process, an Ostwald ripening process is 

carried out, in which smaller particles dissolve while the bigger ones grow into sheet-

like particles with a lamellar structure. Finally, the sheet-like particles tend to curl and 

assembly to form a core-corona hierarchical structure.  

By contrast, several models have been suggested in terms of the formation of metal or 

metal oxide nanotubes in a solution based process. Meng et al. proposed a curving 

followed by seaming of molecular layers mechanism for the tube-formation process of 

materials with layered structure [42]. Mo et al. suggested a template-roll-growth and 

template-twist-join-growth mechanism for the formation of Te nanotubes [43].  

Wang et al. proposed a rolling mechanism for the conversion from MnO2 nanosheets 

to nanotubes [28]. Luo et al. proposed a tip/end-etching process for the formation of 

MnO2 nanotubes [44]. However, no evidence is shown to support these hypotheses in 

our system.  

 

The reaction in our process could be described as follows: 

Half reaction: 

  
−− +→ eClCl 22 2                    )3595.1( 0 VE −=    (8.1) 

  OHMnOeHMnO 224 234 +→++ −+−     )695.1( 0 VE +=   (8.2) 
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Overall reaction: 

OHClMnOClHMnO 2224 432682 ++⇔++ −+−
   (8.3) 

To understand the formation of the α-MnO2 nanotubes, the reaction under different 

periods of time were investigated. Figure 8.5 shows the TEM images of three samples 

taken at different stages of the reaction. When the reaction proceeded for 5 min, some 

microspheres with core-corona architecture were produced with a diameter about 1 μm, 

and the thickness of nanosheets is about 10 nm (Figure 8.5a). After 10 min, the 

microspheres tended to collapse and some fibrous structures formed. From  

Figure 8.5b, it can be seen that three different types of fibrous structures formed: 

nanorod with a diameter about 20 nm (Figure 8.5d); bundle-like tube with a diameter 

about 50 nm (Figure 8.5e); and nanotube with a diameter about 80 nm (Figure 8.5f). 

As shown in Figure 8.5e, the bundle-like tube consists of nanorods about 16 nm in 

diameter, which is consistent to the diameter of the single nanorod in Figure 8.5d. 

Figure 8.5f shows that the nanotube has smooth surface but an uneven end, and the 

wall thickness is about 20 nm. When the reaction time was prolonged to 25 min, the 

nanotubes with a diameter of 80-100 nm formed in majority (> 85%) (Figure 8.5c).  
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Figure 8.5 TEM images of the products prepared in (a) 5 min, (b, d, e, and f) 15 min, 

and (c) 25 min at a reaction temperature of 140 °C. 

 

It has been reported that α-MnO2 naowires/nanorods tended to assemble along lateral 

surface and form thick nanorods through an “oriented attachment” mechanism under 

the hydrothermal condition since the formation of bundles could reduce the surface-to-

volume ratio and the surface energy [45-48]. The exact mechanism for the formation 

of tubular nanostructures in our case is still under investigation.  
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Figure 8.6 Schematic illustration of the formation stages of different shapes of the 

MnO2 nanostructures. 

 

But we believe that two mechanisms, as shown in Figure 8.6, are responsible for the 

formation of the nanotubes: (a) a dissolution-crystallization process that converts less 

ordered precursors into nanorods (from nanosheets to nanorods); (b) an “oriented 

attachment” process which aggregates nanorods along the lateral faces to form tubular 

products. The formation process of the MnO2 nanotubes can be described as follows: 

At the initial stage, the 3D hierarchical architectures formed as described above; then, 

nanorods were produced because at higher temperatures (140 °C) thermal energy is 

enough to overcome the activation energy required for the conversion from nanosheets 
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to nanorods [49]. Meanwhile, some nanorods tended to assemble along their side 

surfaces to reduce the surface energy. The small gaps between nanorods were filled 

rapidly due to coarsening during aging, which led to reconstruction of boundaries and 

smoothing of the surfaces. That is the reason why the nanotubes show a single 

crystalline nature. Since the growth along the length direction ([001] direction) was 

very fast that the mass transport to the growing regions would lead to undersaturation 

of reaction species in the central portions of the growing faces, {001} planes, and 

eventually resulted in the formation of tubular structure having hollow interiors. 

Similar process has been observed in the formation of Te nanotubes [50]. It is 

necessary to note that the dissolution-crystallization and “oriented attachment” are two 

simultaneous processes in the crystal growth [51], the separated stages in Figure 8.6c, 

d are illustrated just for the convenience of explanation.  

In our experiments, it was found that morphology of the product prepared at 180 °C 

was different from that prepared at 140 °C, showing a hollow needle-like structure, 

which was due to the fast growth rate of the nanorods at the external wall of the 

nanotubes (Figure 8.7). This further confirms the proposed growth mechanism. 



159 

 

 

Figure 8.7 SEM images of the product prepared at 180 °C in 25 min. 
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8.4 Conclusions 
 

In summary, we report a facile microwave-assisted hydrothermal route for synthesis of 

3D hierarchical and 1D tubular MnO2 nanostructures. The crystal phase and 

morphology can be easily tailed by adjusting reaction temperature. The formation of 

MnO2 nanotubes follows the dissolution-crystallization and “oriented attachment” 

process. Compared to conventional heating methods, the microwave-assisted 

hydrothermal approach features rapid growth of nanostructured MnO2 with controlled 

structure, which is ideal for large-scale production. We believe that this study not only 

provides a new growth scheme of MnO2 nanotube formation but also gives a rational 

strategy in synthesis and design of nanomaterials with complex architecture and novel 

properties.  
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Chapter 9  

9 Enhanced Performance of Sodium-Oxygen Batteries 
by Nitrogen-Doped Graphene Cathode Materials* 

 

From the previous chapters, we have shown that the properties of carbon cathode, such 

as morphology, porosity and defects, etc, have significant impact on the performance 

of lithium-oxygen battery and we believe that they will also affect the performance of 

sodium-oxygen battery since the discharge products of the latter is not soluble in the 

organic electrolyte but deposit on the electrode surface which is similar to the former. 

Graphene nanosheets (GNSs) have been used as cathode materials for sodium-oxygen 

battery and it was demonstrated that electrochemical properties of GNSs superior to 

that of carbon electrode due to the high electrocatalytic activity. 

In this chapter, nitrogen-doped graphene nanosheets (N-GNSs) were employed as 

cathode materials for sodium-oxygen batteries and the battery delivered a discharge 

capacity of 8600 mAh g-1, which is about two times of that of the pristine GNSs 

electrode. It was further demonstrated that the electrocatalytic activity of N-GNSs both 

for oxygen reduction and oxygen evolution reaction is higher than that of GNSs. The 

excellent electrochemical performance of N-GNSs is attributed to the active sites 

introduced by nitrogen doping. 

 

  

                                                 
*A version of this chapter is to be submitted for publishing. 



168 

 

9.1 Introduction 
 

Nonaqueous lithium-oxygen batteries have been intensively studied for past few years 

because they show extremely high energy density which makes the energy storage 

system a great candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs) 

[1, 2]. Since the discharge products are not soluble in the electrolyte but deposit in the 

electrode and the battery reaction will be terminated eventually when the oxygen 

diffusion channels are blocked [3-5]. As a result, it is well accepted that one of the 

challenges to improve the battery performance is to develop an optimum cathode with 

appropriate morphology, conductivity, surface area, and porosity, etc. However, large 

overpotentials are observed for these batteries during the discharge and charge 

processes, leading to relatively low round-trip energy storage efficiencies. In addition, 

limited amount of lithium resource inevitably prevents lithium-oxygen batteries from 

wide applications in EVs and HEVs [6]. Recently, studies on replacing lithium by 

sodium for lithium-oxygen batteries have been reported and the results are attractive 

since sodium has high earth abundance, modest cost, and most importantly, the 

sodium-oxygen batteries can deliver a energy density of about 1600 Wh kg-1 which 

holds the same great promise as lithium-oxygen battery to meet the rapidly growth of 

energy demands for future automotive applications [7-8]. Similar to lithium-oxygen 

batteries, the discharge product will also deposit on the electrode surface for sodium-

oxygen batteries, therefore, the cathode properties, such as materials, configuration or 

other factors are very critical for determining the battery performance. For example,  

Fu et al. demonstrated that graphene nanosheets (GNSs) increased discharge capacity 

compared to normal carbon film electrode due to the unique chemical and physical 

properties of GNSs [9].  

In our previous studied, we showed that chemical doping with nitrogen atoms to 

carbon materials can modify the electronic property, provide more active sites, and 

enhance the interaction between carbon structure and other molecules, thus improves 

the performance of lithium-oxygen batteries [10, 11]. It is expected that nitrogen 
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doping into carbon cathode can increase sodium-oxygen battery performance. 

However, to our best knowledge, there are few reports about heteroatom-doping effect 

of carbon materials for sodium-oxygen battery system. Here, nitrogen-doped graphene 

nanosheets (N-GNSs) were synthesized and employed as cathode materials for 

sodium-oxygen batteries. We found that N-GNSs show excellent electrocatalytic 

activity for oxygen reduction reaction (ORR), therefore, deliver two times of discharge 

capacity compared to GNSs. This finding not only shows that N-GNSs are promising 

electrode materials, but also gives a rational direction to modify other carbon materials 

for application in sodium-oxygen batteries. 

 

9.2 Experimental 
 

9.2.1 Materials synthesis 

GNSs were prepared by the oxidation of graphite powder using the modified Hummers’ 

method, and N-GNSs were prepared by post heating the GNSs under ammonia 

atmosphere [12]. 

 

9.2.2 Physical characterizations 

The morphology of the discharge products of GNSs and N-GNSs electrodes were 

characterized by a Hitachi S-4800 field emission scanning electron microscopy 

(FESEM). The morphology of GNSs and N-GNSs were characterized by a Hitachi  

H-7000 transmission electron microscopy (TEM). The XPS spectra were tested by a 

Kratos Axis Ultra X-ray photoelectron spectrometer with Al Kα as the X-ray source. 

Raman scattering (RS) spectra were recorded on a HORIBA Scientific LabRAM HR 

Raman spectrometer system equipped with a 532.4 nm laser. N2 adsorption/desorption 
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isotherms were obtained using a Folio Micromeritics TriStar Ⅱ Surface Area and Pore 

Size Analyser.  

 

9.2.3 Electrochemical measurements 

Swagelok type cells were used to test the battery performance. GNSs or N-GNSs and 

PVDF (Alfa Aesar) with a weight ratio of 9:1 were casted onto a separator (Celgard 

3500) as cathode. The electrodes were cut to 3/8 inch in diameter and the loadings of 

GNSs or N-GNSs were ~ 0.3 mg. The electrolyte was 0.5 mol dm-3 NaSO3CF3 

dissolved in diethylene glycol dimethyl ether (C6H14O3, diglyme, DEGDME). The 

discharge/charge characteristics were performed using an Arbin BT-2000 battery 

station in a voltage range of 1.8-3.6 V in a 1 atm oxygen atmosphere at room 

temperature (25 °C). Cyclic voltammetry (CV) measurements were carried out using a 

CHI 600c electrochemical work station at a scan rate of 2 mV s-1 in a voltage range of 

1.8-3.6 V at room temperature (25 oC). Electrochemical impedance spectra were 

recorded in the frequency range of 0.01-105 Hz using a VMP3 Potentiostat (BioLogic 

Science Instruments). The resulted spectra were fitted by ZView software. 
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9.3 Results and Discussion 
 

 

Figure 9.1 The voltage profiles of (a) GNSs and (b) N-GNSs electrodes at various 

current densities; CV curves of (c) GNSss and (d) N-GNSs electrodes at a scan rate of 

2 mV s-1 in a voltage range of 1.8-3.6 V. 

 

Figure 9.1a and 9.1b show the discharge curves of GNSs and N-GNSs electrodes in 

sodium-oxygen cells at various rates of 75, 150, and 300 mA g-1, respectively. As can 

be seen, the N-GNSs electrodes deliver higher discharge capacities at all different 

current densities, for example, the discharge capacity at 75 mA g-1 is about  

8600 mAh g-1, which is about two times of that for GNSs electrode (4350 mAh g-1). 

The discharge capacity decreases with increasing current density for both electrode 

materials. The discharge capacity of N-GNSs electrode decreases to 6000 mAh g-1 at 
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150 mA g-1, and 3980 mAh g-1 is obtained at 300 mA g-1. However, they are still 

higher than that of GNSs, which are 2550 and 990 mAh g-1 at 150 and 300 mA g-1, 

respectively. The average discharge voltages of N-GNSs electrodes are also higher 

than those of GNSs electrodes at different current densities. Recent studies have shown 

that the oxygen adsorption is the first step before the first charge transfer process for 

carbonaceous materials, that the oxygen reduction reaction (ORR) is preferably taken 

place on the defective sites [13, 14]. As shown in Figure SI-9.1, the intensity ratio of 

D to G bands of GNSs and N-GNSs are 0.96 and 1.10, respectively, confirming that 

more defects are obtained after nitrogen doping, resulting in an increase in the 

discharge voltages. 

The cyclic voltammetry (CV) curves from the GNSs and N-GNSs electrodes in argon 

or oxygen atmosphere are shown in Figure 9.1c and 9.1d. There are no obvious 

cathodic and anodic peaks in the CVs for both samples tested in argon; however, 

reduction reactions occur after introducing oxygen into the system. As can be seen, the 

onset potential of ORR for GNSs is at ~ 2.33 V while for N-GNSs, the onset potential 

of ORR shifted positively to around ~ 2.35 V, indicating a superior electrocatalytic 

activity of N-GNSs for ORR [15, 16]. It is important to note that the anodic peak, 

corresponding to the oxidation of discharge product of N-GNSs electrode is at ~ 2.60 

V which is ~ 46 mV negative shifted compared to GNSs electrode. The lower 

oxidation voltage indicates that N-GNSs show better electrocatalytic activity for 

oxygen evolution reaction (OER) as well. 
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Figure 9.2 Charge/discharge performance of initial 3 cycles of (a) GNS and (b) N-

GNSs electrodes at 75 mA g-1. 
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The cycleability of sodium-oxygen batteries employing GNSs and N-GNSs electrodes 

were studied by cycling at low depth of discharge (DOD) with a cut-off of  

1150 mAh g-1 (Figure 9.2). It is clearly shown that the discharge plateaus for the first 

3 cycles for N-GNSs electrode is slightly decreased while for GNSs electrode, the 

decreasing is obvious. For the charge processes, the N-GNSs electrode also shows 

lower charge voltage and higher charge capacity than GNSs electrode. Therefore, the 

N-GNSs display higher bifunctional electrocatalytic activities for both ORR and OER 

than that of GNSs. 

 

Figure 9.3 Measured and calculated electrochemical impedance spectra of GNSs and 

N-GNSs electrodes after discharge at 75 mA g-1. The inset is the equivalent circuit 

used for the analysis of the impedance plots. 
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In order to further study the electrode polarization of GNSs and N-GNSs electrode, 

electrochemical impedance spectroscopic (EIS) analysis was conducted. The Nyquist 

plots for cells employing two samples as electrode materials obtained after the first 

discharge are shown in Figure 9.3. As can be seen, both plots exhibit two semicircles 

followed by a linear part, which is caused by the dispersion of three different processes 

with different time constants [17]. The intercept for high frequency at the real Z-axis is 

corresponded to the total resistance of the circuit including, electrolyte resistance, 

electronic resistance of current collector and external circuit connecting parts [18]. The 

first semicircle at high frequency is attributed to the ohmic resistance and film 

formation within the electrode as well as the intrinsic electronic and contact resistances 

of the electrode materials while the second semicircle is assigned to the combination of 

the charge-transfer resistance [19-21]. The EIS spectra are fitted using an equivalent 

circuit (inset of Figure 9.3) and the obtained parameters are listed in Table 9.1.  

Table 9.1 Dependence of equivalent-circuit parameters for GNSs and N-GNSs 

electrodes. 

 Re/Ω Rint/F Cint/Ω Rct/Ω Cm/F Wo/Ω 

N-GNSs 36.4 655.6 2.46e-6 663.7 47.9e-6 0.274 

GNSs 38.0 517.1 5.76e-6 1556.0 94.4e-6 0.284 

Re is the ionic resistance of electrolyte; Rint and Cint are the interfacial resistance and 

capacitance of film on the interface between electrode/electrolyte, respectively; Rct is 

the charge-transfer resistance while Cm is the parallel capacitance for the semicircle 

accordingly, and Wo is the finite length Warburg resistance. It shows that the 

electrolyte resistance is similar for GNSs and N-GNSs electrodes; however, there are 

significant differences for other circuit parameters. The interface resistance of N-GNSs 

electrode is higher than that of GNSs electrode, indicating the formation of more 

discharge products in the former electrode, which is consistent with the results of the 

discharge capacities. While for the charge-transfer resistance, Rct which is related to 
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the conductivity of the discharge products, N-GNSs electrode shows lower value even 

with more discharge products. The reason for this finding will be discussed in the 

following section but from the impedance results, it is suggested that the GNSs 

electrode should have larger electrochemical polarization than N-GNSs electrode due 

to higher charge-transfer resistance. 

Figure 9.4a and 9.4b show the morphology of the discharge products on GNSs and N-

GNSs electrodes, respectively. The particle size on GNSs is 200~300 nm while for  

N-GNSs is 50 nm. In our previous study on N-GNSs as electrode materials for lithium-

oxygen battery, we have found similar results that the particle size decreased after 

doping nitrogen into GNSs and the reason is the discharge products most likely prefer 

to nucleate and grow around the defective sites [22]. As can be seen from Figure 9.4c 

and 9.4d, it is very clear that after 12 h discharge, the discharge products dispersed 

more uniformly on the N-GNSs surface with smaller particle size 5~10 nm while 

aggregation of discharge products happened on GNSs (mark by blue circles). The 

nature and morphology of discharge products, Li2O2, significantly affected the charge 

overpotential of lithium-oxygen battery. It is suggested by the theoretical study that the 

lithium deficient Li2O2 surface would show low charge overpotential and the better 

interaction between the discharge products and carbon surface would further lower the 

charge overpotential [23, 24]. There is no information on the electric transport 

properties of NaO2 due to sodium vacancy or deficiency and further study is required; 

however, it is believed that the difference in morphology on GNSs and N-GNSs 

electrodes as well as the enhanced interaction for the discharge products to N-GNSs 

surface resulted from the defective sites should be correlated to the lower 

overpotential/polarization. 
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Figure 9.4 SEM images of the fully discharged a, GNSs, b, N-GNSs electrodes and c, 

GNSs, d, N-GNSs electrodes discharged for 12 h; e, Raman spectra of pristine and 

discharged GNSs and N-GNSs electrodes. 

 



178 

 

The composition of the discharge products were identified by Raman spectroscopy and 

the obtained spectra are shown in Figure 9.4e. An addition broad peak corresponding 

to NaO2 appears for both GNSs and N-GNSs samples at band of ~ 1135 cm-1, which is 

shifted to lower frequency compared to the results reported by Adelhelm et al [6]. We 

believe the band broadening and shift are due to the quantum size confinement effect 

of the particle size since the discharge product obtained by Adelhelm et al is about 1-

50 μm in size which is much bigger than ours [25].  

The morphology of discharge products at various current densities were observed by 

SEM. As shown in Figure 9.5, in addition to the particle size with ~ 50 nm in diameter 

on the carbon surface, larger particle (100-300 nm) also appeared on top of the smaller 

ones at 150 mA g-1, however, when the current density increases to 300 mA g-1, no 

obvious particle-shape discharge products could be found but a deposited film. The 

reaction pathway leading to NaO2 could be described as the reaction below [26]. 

                   Naା  eି  Oଶ
כ ՜ NaOଶ

כ                (9.1) 

where the * refers to a surface adsorbed species. Firstly, NaO2
* forms on the surface of 

carbon. If the solubility of NaO2
* is zero, they will permanently remain on the reaction 

sites and as the discharge continues, the number of active sites decreases accordingly, 

leading to a continuous increase in overpotential during discharge [27]. Therefore, the 

discharge products would re-dissolve into the electrolyte via solvation. It is also clearly 

demonstrated by the aggregation of particles during discharge, indicating it is not a 

simple growth mechanism form on the carbon surface. 
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Figure 9.5 SEM images of discharge products on N-GNSs electrodes at (a) 150, and 

(b) 300 mA g-1. 
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The growth mechanism for the different morphology of discharge products is proposed 

and shown in Figure 9.6. At low current density, the charge-transfer rate from the 

surface is slow; the formation rate of NaO2 is slow as well. When the concentration of 

the solvated NaO2 exceeds the solubility limit, they will precipitate on the surface of 

the carbon materials (Figure 9.6c). At high current density, large amount of NaO2 

generates on the surface, which may undergo a surface migration, resulting in the 

formation of very uniform film (Figure 9.6d). For the current densities in the range of 

low to high, there is competition between the salvation, precipitation and migration. 

Similar mechanism for the morphology differences of discharge products in lithium-

oxygen batteries has been proposed by Nazar et al. [23], however, it is believe that the 

exact growth of NaO2 is more complicated and further study is needed.  

 

Figure 9.6 Schematic of the growth of discharge product nanostructures on N-GNS 

electrodes. 
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9.4 Conclusions 
 

In summary, we reported the superior performance of N-GNSs as cathode materials for 

sodium-oxygen batteries in comparison to GNSs. It was demonstrated the 

improvement was due to the defective sites introduced by nitrogen doping. The 

morphology of the discharge products on N-GNSs electrode is different from those on 

GNSs electrode, in which product distribution is more uniform and the particle size is 

smaller. The formation of the discharge products on N-GNSs at different current 

densities are resulted from various processes, including salvation, precipitation and 

migration. We believe that heteroatom-doping to carbon cathode is a rational direction 

to modify other substrate materials for sodium-oxygen batteries. 
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Figure SI-9.1 Raman spectra of GNSs and N-GNSs. 
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Chapter 10  

10 Conclusions and Future Perspective 
 

In this chapter, the results and contributions of the thesis work were summarized and 

some personal opinions and suggestions for future work are given. 
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10.1 Conclusions 
 

A series of experiments were conducted in this study to synthesized novel carbon-

based nanomaterials as electrode structure and architecture materials for lithium-air 

and sodium- air batteries. The correlations between the properties of these materials 

and battery performance were investigated. Besides, the underlying mechanism of 

discharge product growth and the influence for the battery performance were also 

explored. In addition, a novel method to synthesize nanomaterials was developed and 

it is believed this approach is suitable for application in preparing catalysts for  

lithium-air and sodium-air batteries. In summary, this study mainly worked on three 

areas: nanomaterials synthesis, characteristics and battery performance. 

Carbon blacks with nanoscale size have been heat-treated under different atmospheres 

(NH3, CO2, and CO2/H2) for various times. The procedure allowed the properties of 

carbon materials to be tailored and controlled, such as the surface area, porosity, 

defects, nitrogen content, and functional group amount. More importantly, all the 

samples studied as cathode materials for lithium-air batteries were from the same 

starting material which made this study systematic and the results comparable.The 

mesopore surface areas increased as the treating time increased while the micropore 

surface area only increased until the mass loss reached 35% and then decreased. It is 

suggested that the surface area of mesopores plays an important role for the discharge 

capacity of lithium-air batteries due to the passivation effect of discharge product film 

on the carbon surface no matter what gas (NH3 or CO2 or CO2 + H2) is used to obtain 

porosity in the samples. Nitrogen and oxygen-containing functional groups introduced 

by the gas treatments or by contact of the pyrolysed product with air, have very little or 

no influence on the performance of these carbon materials in batteries. However, too 

large pore size in the mesoporous range leads to a less efficient use of mesopore 

volumes and the the desired pore size is about 3.5 nm considering the passivation 

effect. 
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1D N-CNTs were prepared and employed as cathode materials for lithium-air batteries. 

This work compared the battery performance based on pristine and doped carbon 

nanotubes. Both the samples can form 3D opening electrodes which provide good 

oxygen transportation channels, however, the N-CNT electrode delivered a discharge 

capacity of 866 mAh g-1, which is about 1.5 times of that for CNT electrode. In 

addition, the N-CNTs showed much better electrocatalytic activity for Li2O2 

decomposition, therefore improving the reversibility for lithium air batteries. The 

performance improvement of N-CNTs results from heteroatom nitrogen doping. 

2D GNSs were synthesized by a modified Hummers’ method which involves graphite 

oxidation and thermal exfoliation procedures. The GNSs electrode delivers a capacity 

of 8705.9 mAh g-1, which is the highest capacity of any carbon-based materials in 

lithium-air batteries ever reported by then. The unique structures of GNSs provide 

ideal porosity which is suitable for the electrolyte wetting and the O2 diffusion, thus 

improving the efficiency of the catalyst reactions. And the electrode with these 

structures not only increases the electrochemically accessible site, but also provides a 

large diffusion path for the O2 mass transfer, therefore, improving the discharge 

capacity dramatically. Besides, the pore size distribution as well as the active sites at 

the edge sites of GNSs also plays important roles in the superior performance.  

The lithium-air battery performance made of 2D GNSs as cathode materials were 

further improved by doping nitrogen to the graphene frameworks. The N-GNSs 

electrode delivered a discharge capacity of 11660 mAh g-1, which is about 40% higher 

than that of the pristine GNSs electrode. Furthermore, the electrocatalytic activity of 

N-GNSs for oxygen reduction in the nonaqueous electrolyte was 2.5 times as that of 

GNSs. The excellent electrochemical performance of N-GNSs was attributed to the 

defects and functional groups as active sites introduced by nitrogen doping. Moreover, 

the distribution of the discharge products was more uniform on N-GNSs, while the 

product particles aggregated into large clusters on GNSs and some surfaces are free of 

coverage. This suggested that the presence of the homogeneously distributed nitrogen 
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species resulting in more active sites (defects and functional groups) of N-GNSs 

provide more nucleation sites and thus promotes a higher dispersion. 

Furthermore, GNSs were doped by sulphur element and it was confirmed and the 

sulphur distribution in the graphene was relatively uniform (not only in plane but also 

at the edge of GNSs). The as-prepared sample was applied as cathode material for 

lithium-air battery. In contrast to nitrogen-doping graphene sample, the S-GNSs 

electrode showed decreased discharge capacity compared to pristine GNSs electrode. 

In addition, the morphology of discharge products were also varied, and Li2O2 

nanorods with a diameter about 100 nm grew on the S-GNSs electrode. From the 

XANES results, it is suggested the discharge product contained structural defects such 

as oxygen and/or lithium vacancies resulting in different charge performance. The 

growth of the discharge products was also studied and the morphology evolution was 

due to different electrode polarizations. 

A facile microwave-assisted hydrothermal route for synthesis of MnO2 nanostructures 

with different morphologies (3D hierarchical, 1D tubular) and crystallinities 

(birnessite-, α-type) was developed. It is found that the crystal phase and morphology 

can be easily tailed by adjusting reaction temperature. The formation of MnO2 

nanotubes follows the dissolution-crystallization and “oriented attachment” process. 

And compared to conventional heating methods, the microwave-assisted hydrothermal 

approach features rapid growth of nanostructured MnO2 with controlled structure, 

which is ideal for large-scale production. The finding gives a rational strategy in 

synthesis and design of nanomaterials with complex architecture and novel properties 

which can be used as electrocatalysts for lithium- and sodium-air batteries. 

The N-GNSs were also employed as cathode materials for nonaqueous sodium-oxygen 

batteries and it was found that N-GNSs showed higher electrocatalytic activity for 

oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), resulting in 

improving discharge and charge performance. It is believed that the excellent 

electrochemical performance of N-GNSs is attributed to the active sites by nitrogen 
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doping. Similarly, the morphology of the discharge products, NaO2, on N-GNSs 

electrode was different from GNSs, which the dispersion was more uniform and the 

particle size was smaller. The formation of the discharge products on N-GNSs at 

different current densities were from different processes, including salvation, 

precipitation and migration. 

 

10.2 Future Perspective 
 

Despite the advances demonstrated in this thesis, a large number of unsolved 

challenges still remain. Future work could focus on the following aspects: 

 This thesis reported that the surface area of mesopores in carbon black is 

critical for lithium-air battery performance; however, due to the passivation 

effect of discharge products, a desired pore size is obtained (~ 3.5 nm). It is 

expected to modify the procedure and parameters for the heat-treatment that 

carbon blacks with large amount of desired pore size can be prepared, further 

optimizing the battery performance. 

 This thesis demonstrated that nitrogen doping into CNTs and GNSs can 

increase the electrocatalytic activity towards electrode reactions, therefore 

improving the battery performance. However, the study of mechanisms for the 

nitrogen doping can be deeper. For example, samples with different nitrogen 

amount or nitrogen types (pyridinic-, pyrrolic-, or graphitic-N) can be 

synthesized and the correlations between these parameters and battery 

performance should be investigated. 

 The cycleability is another critical issue for the practical application of  

lithium-air and sodium-air batteries. Therefore, bifunctional electrocatalysts 

which are both good for ORR and OER should be synthesized and applied in 
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these systems. And based on the finding that N-CNTs and N-GNSs can form 

novel 3D porous electrode, it is interesting to combine the electrocatalysts with 

these air electrode materials to develop high capacity, rechargeable batteries. 

Another strategy is to apply metal or metal oxides nanowires which process 

certain catalytic activity for ORR as 3D electrodes in lithium-air and  

sodium-air batteries. For example, growth of various nanowires (TiOx, ZrO2, 

WO3, SnO2, Sn) directly on carbon paper may considerably improve electrical 

contact with the external electrical circuit and the supported catalysts’ 

utilization. 

 The research of sodium-air battery is at the early stage, air electrode materials 

and structure design as well as electrocatalysts synthesis and optimization 

should also be considered. More importantly, the understanding of reaction 

mechanisms is the key for developing this energy system. 
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